check
Publications | Plant Sciences and Genetics in Agriculture

Publications By Year

  • «
  • 2 of 2
  •  

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Publications

2021
Halpern, M. ; Gashu, K. ; Zipori, I. ; Saranga, Y. ; Yermiyahu, U. . Tef (Eragrostis Tef) Responses To Phosphorus And Potassium Fertigation Under Semi-Arid Mediterranean Climate. AGRONOMY-BASEL 2021, 11.Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is an annual small grain, panicle bearing, C-4 cereal crop native to Ethiopia, where it is a major staple food. The objectives of the present study were to characterize the responses of two tef genotypes to escalating phosphorus (P) and potassium (K) levels and to determine an optimum range for P and K at which tef performance is maximized. Two experiments were carried out in the Gilat Research Station, each testing two different genotypes of tef (405B and 406W), one experiment in pots in controlled conditions, and the other in the field. In both experiments, the highest grain yield increased until 6 mg L-1 P, and declined at 12 mg L-1 P. The decline was precipitous and significant in the pot experiment, and gradual and statistically insignificant in the field experiment. In the pots experiment, the grain yield increased until 40 mg L-1 K, with no significant decrease thereafter. The effect of K concentration was only seen in the grain yield and not in the size of the other plant organs. In the field experiment, grain yield was highest at 80 mg L-1 K, but it was not statistically different from 40 mg L-1. The effect of K on growth was only apparent at maturity and not at flowering.
Fatiukha, A. ; Deblieck, M. ; Klymiuk, V. ; Merchuk-Ovnat, L. ; Peleg, Z. ; Ordon, F. ; Fahima, T. ; Korol, A. ; Saranga, Y. ; Krugman, T. . Genomic Architecture Of Phenotypic Plasticity In Response To Water Stress In Tetraploid Wheat. International Journal of Molecular Sciences 2021, 22. Publisher's VersionAbstract
Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress.
2020
Gashu, K. ; Halpern, M. ; Zipori, I. ; Bustan, A. ; Saranga, Y. ; Yermiyahu, U. . Tef (Eragrostis Tef Trotter) Responses To Nitrogen Fertigation Under Semi-Arid Mediterranean Climate. AGRONOMY-BASEL 2020, 10.Abstract
Eragrostis tef (Zucc.) Trotter (tef) is a small annual grain, panicle-bearing, C-4 cereal crop native to Ethiopia, where it is a major staple food. The objectives of the present study were to characterize the responses of two tef genotypes to escalating nitrogen (N) levels in terms of shoot, root, and grain biomass production, N concentration and uptake, and to determine an optimum N range at which tef performance is maximized. The N was applied in the irrigation water (Fertigation) in order to provide a consistent concentration of N in the root zone. A second goal was to test the feasibility of growing tef in the hot, arid conditions of the Northern Negev Desert. Two experiments were carried out in the Gilat Research Station (Negev region, Israel), each testing two different genotypes of tef (405B and 406W), and each including five replicates for each treatment. In the winter of 2015-2016, tef plants were grown in perlite filled pots in a walk-in plastic-covered tunnel. Five different N treatments were applied through fertigation, meaning the fertilizer was applied with the irrigation water (10, 20, 40, 80, 120 mg L-1). All other nutrients were applied at the same sufficient rate. In the summer of 2016, tef plots were sown in open-field and applied with four different rates of N fertilization (0, 30, 60, 120 mg L-1). Biomass of the different plant parts, SPAD values, N, P and K concentration, and the lodging index were recorded in each experiment. The harvest index was also calculated. Optimum N fertigation concentration in both experiments was between 40 and 80 mg L-1, under which the time to flowering was decreased, and yield and grain protein concentration were optimized. Underfertilization caused a decrease in overall plant growth, whereas overfertilization caused an increase in vegetative growth at the expense of grain yield. Potassium uptake increased along with increased N availability, whereas P uptake did not. The fertilization rate will always need to take into account local soil and climate conditions. The field experiment also pointed to low harvest index as a major limitation on tef cultivation in the Northern Negev.
Deblieck, M. ; Fatiukha, A. ; Grundman, N. ; Merchuk-Ovnat, L. ; Saranga, Y. ; Krugman, T. ; Pillen, K. ; Serfling, A. ; Makalowski, W. ; Ordon, F. ; et al. Genotypemapper: Graphical Genotyping On Genetic And Sequence-Based Maps. PLANT METHODS 2020, 16.Abstract
Background The rising availability of assemblies of large genomes (e.g. bread and durum wheat, barley) and their annotations deliver the basis to graphically present genome organization of parents and progenies on a physical scale. Genetic maps are a very important tool for breeders but often represent distorted models of the actual chromosomes, e.g., in centromeric and telomeric regions. This biased picture might lead to imprecise assumptions and estimations about the size and complexity of genetic regions and the selection of suitable molecular markers for the incorporation of traits in breeding populations or near-isogenic lines (NILs). Some software packages allow the graphical illustration of genotypic data, but to the best of our knowledge, suitable software packages that allow the comparison of genotypic data on the physical and genetic scale are currently unavailable. Results We developed a simple Java-based-software called GenoTypeMapper (GTM) for comparing genotypic data on genetic and physical maps and tested it for effectiveness on data of two NILs that carry QTL-regions for drought stress tolerance from wild emmer on chromosome 2BS and 7AS. Both NILs were more tolerant to drought stress than their recurrent parents but exhibited additional undesirable traits such as delayed heading time. Conclusions In this article, we illustrate that the software easily allows users to display and identify additional chromosomal introgressions in both NILs originating from the wild emmer parent. The ability to detect and diminish linkage drag can be of particular interest for pre-breeding purposes and the developed software is a well-suited tool in this respect. The software is based on a simple allele-matching algorithm between the offspring and parents of a crossing scheme. Despite this simple approach, GTM seems to be the only software that allows us to analyse, illustrate and compare genotypic data of offspring of different crossing schemes with up to four parents in two different maps. So far, up to 500 individuals with a maximum number of 50,000 markers can be examined with the software. The main limitation that hampers the performance of the software is the number of markers that are examined in parallel. Since each individual must be analysed separately, a maximum of ten individuals can currently be displayed in a single run. On a computer with an Intel five processor of the 8th generation, GTM can reliably either analyse a single individual with up to 12,000 markers or ten individuals with up to 3,600 markers in less than five seconds. Future work aims to improve the performance of the software so that more complex crossing schemes with more parents and more markers can be analysed.
Ben-Zeev, S. ; Rabinovitz, O. ; Orlov-Levin, V. ; Chen, A. ; Graff, N. ; Goldwasser, Y. ; Saranga, Y. . Less Is More: Lower Sowing Rate Of Irrigated Tef (Eragrostis Tef) Alters Plant Morphology And Reduces Lodging. AGRONOMY-BASEL 2020, 10.Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is a panicle-bearing cereal crop plant, originating from and grown mainly in Ethiopia. Tef yields highly nutritious gluten-free grain as well as high-quality forage, therefore, interest is rising regarding tef cultivation for grain and forage outside Ethiopia. Lodging is a major factor limiting tef quality and yield, with losses estimated at 30%-35% and presumably higher under mechanical harvest. Studies in other cereal crops suggested that lowering plant density would lead to sturdier plants less prone to lodging. In this work, we reported on the effects of sowing rate on lodging, lodging-related traits, and productivity of tef under irrigated conditions. Four tef genotypes were grown under irrigation across two years at three sowing rates: low (3 kg/ha), medium (6 kg/ha), and high (common, 9 kg/ha). Grain yield and biomass did not differ significantly among sowing rates. The visually assessed lodging index (LI) increased as the season progressed, with the lowest values recorded under low sowing density. A significant difference in LI values among the tested genotypes suggested potential for crop improvement. Aerial RGB images of the field taken by an unmanned aerial vehicle twice during the second season produced a high-resolution crop surface model, which was used to assess lodging. Aerial-based LI values were significantly correlated with the ground-based ones and exhibited better capacity to identify minor differences in lodging. Among the morphological traits assessed, crown diameter, crown root number, and crown root diameter were significantly affected by sowing rate and genotype and were correlated with LI values. In summary, this study demonstrated for the first time the feasibility of tef production under irrigated Mediterranean conditions and the potential of a reduced sowing rate as a remedy for lodging.
Ben-Zeev, S. ; Kerzner, S. ; Rabinovitz, O. ; Saranga, Y. . Optimizing Sowing Depth Of Tef For Irrigated Mediterranean Conditions: From Laboratory To Field Studies. AGRONOMY-BASEL 2020, 10.Abstract
Developing new crops adapted to arid conditions is a promising approach to meet the increasing demand for food production under expanding aridity. Tef [Eragrostis tef (Zucc.) Trotter] is a C4 cereal crop cultivated mainly in Ethiopia and the Horn of Africa, and known for its high resilience to stressful environments. Due to their tiny size, tef seeds are traditionally sown by broadcasting and lightly covering with soil. Under semiarid Mediterranean conditions, a deeper sowing may guarantee seedling establishment while saving on irrigation water. The objective of this study was, therefore, to determine the effects of sowing depth on tef emergence, development, lodging, and productivity. Tef seeds were sown at different depths in test tubes and pots, and in two field experiments. In tubes and pots, time from sowing to emergence increased about twofold and emergence rate decreased in the deepest sowing (3 cm) treatment compared to controls (0 cm). In the pot and field trials, deep sowing (3 cm) significantly reduced plant height, shoot and root biomass, and lodging. Sowing depths of 1-2 cm allowed successful plant establishment while not exacting penalties on plant emergence or development; hence this range appears to be optimal for sowing irrigated tef.
Hellwig, T. ; Abbo, S. ; Sherman, A. ; Coyne, C. J. ; Saranga, Y. ; Lev-Yadun, S. ; Main, D. ; Zheng, P. ; Ophir, R. . Limited Divergent Adaptation Despite A Substantial Environmental Cline In Wild Pea. Molecular Ecology 2020, 29, 4322 - 4336. Publisher's VersionAbstract
Abstract Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.
Hellwig, T. ; Flor, A. ; Saranga, Y. ; Coyne, C. J. ; Main, D. ; Sherman, A. ; Ophir, R. ; Abbo, S. . Environmental And Genetic Determinants Of Amphicarpy In Pisum Fulvum, A Wild Relative Of Domesticated Pea. Plant Science 2020, 298, 110566. Publisher's VersionAbstract
Pisum fulvum is an annual legume native to Syria, Lebanon, Israel and Jordan. In certain locations, P. fulvum individuals were documented to display a reproductive dimorphism – amphicarpy, with both above and below ground flowers and pods. Herein we aimed to study the possible role of soil texture on amphicarpy in P. fulvum, to investigate the possible bio-climatic associations of P. fulvum amphicarpy and to identify genetic markers associated with this phenotype. A set of 127 germplasm accessions sampled across the Israeli distribution range of the species was phenotyped in two common garden nurseries. Land use and bioclimatic data were used to delineate the eco-geographic clustering of accession's sampling sites. Single nucleotide polymorphism (SNP) markers were employed in genome-wide association study to identify associated loci. Amphicarpy was subject to strong experimental site x genotype interaction with higher phenotypic expression in fine textured soil relative to sandy loam. Amphicarpy was more prevalent among accessions sampled in eastern Judea and Samaria and was weakly associated with early phenology and relatively modest above ground biomass production. Twelve SNP markers were significantly associated with amphicarpy, each explaining between 8 and 12 % of the phenotypic variation. In P. fulvum amphicarpy seems to be a polygenetic trait controlled by an array of genes that is likely to be affected by environmental stimuli. The probable selective advantage of the association between amphicarpy and early flowering is in line with its relative prevalence in drought prone territories subject to heavy grazing.
Fatiukha, A. ; Klymiuk, V. ; Peleg, Z. ; Saranga, Y. ; Cakmak, I. ; Krugman, T. ; Korol, A. B. ; Fahima, T. . Variation In Phosphorus And Sulfur Content Shapes The Genetic Architecture And Phenotypic Associations Within The Wheat Grain Ionome. The Plant JournalThe Plant JournalPlant J 2020, 101, 555 - 572. Publisher's VersionAbstract
Summary Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Gyan, N. M. ; Yaakov, B. ; Weinblum, N. ; Singh, A. ; Cna’ani, A. ; Ben-Zeev, S. ; Saranga, Y. ; Tzin, V. . Variation Between Three Eragrostis Tef Accessions In Defense Responses To Rhopalosiphum Padi Aphid Infestation. 2020, 11, 1892. Publisher's VersionAbstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Tietel, Z. ; Simhon, E. ; Gashu, K. ; Ananth, D. A. ; Schwartz, B. ; Saranga, Y. ; Yermiyahu, U. . Nitrogen Availability And Genotype Affect Major Nutritional Quality Parameters Of Tef Grain Grown Under Irrigation. Scientific Reports 2020, 10, 14339. Publisher's VersionAbstract
Worldwide demand for tef (Eragrostis tef) as a functional food for human consumption is increasing, thanks to its nutritional benefits and gluten-free properties. As a result, tef in now grown outside its native environment in Ethiopia and thus information is required regarding plant nutrition demands in these areas, as well as resulting grain health-related composition. In the current work, two tef genotypes were grown in Israel under irrigation in two platforms, plots in the field and pots in a greenhouse, with four and five nitrogen treatments, respectively. Nutritional and health-related quality traits were analyzed, including mineral content, fatty acid composition, hydrophilic and lipophilic antioxidative capacity, total phenolic content and basic polyphenolic profile. Our results show that tef genotypes differ in their nutritional composition, e.g. higher phenolic contents in the brown compared to the white genotype. Additionally, nitrogen availability positively affected grain fatty acid composition and iron levels in both experiments, while negatively affecting total phenolics in the field trials. To conclude, nitrogen fertilization is crucial for crop growth and productivity, however it also implicates nutritional value of the grains as food. These effects should be considered when fertilizing tef with nitrogen, to optimize both crop productivity and nutritional effects.
2019
Merchuk-Ovnat, L. ; Ovnat, Z. ; Amir-Segev, O. ; Kutsher, Y. ; Saranga, Y. ; Reuveni, M. . Coveragetool: A Semi-Automated Graphic Software: Applications For Plant Phenotyping. Plant Methods 2019, 15. Publisher's VersionAbstract
Background: Characterization and quantification of visual plant traits is often limited to the use of tools and software that were developed to address a specific context, making them unsuitable for other applications. CoverageTool is flexible multi-purpose software capable of area calculation in cm2, as well as coverage area in percentages, suitable for a wide range of applications. Results: Here we present a novel, semi-automated and robust tool for detailed characterization of visual plant traits. We demonstrate and discuss the application of this tool to quantify a broad spectrum of plant phenotypes/traits such as: tissue culture parameters, ground surface covered by annual plant canopy, root and leaf projected surface area, and leaf senescence area ratio. The CoverageTool software provides easy to use functions to analyze images. While use of CoverageTool involves subjective operator color selections, applying them uniformly to full sets of samples makes it possible to provide quantitative comparison between test subjects. Conclusion: The tool is simple and straightforward, yet suitable for the quantification of biological and environmental effects on a wide variety of visual plant traits. This tool has been very useful in quantifying different plant phenotypes in several recently published studies, and may be useful for many applications. © 2019 The Author(s).
Ben-Zeev, S. ; Bimro, J. ; Barak, V. ; Saranga, Y. . Phenotypic Diversity And Heritability In Eragrostis Tef Under Irrigated Mediterranean Conditions. Israel Journal of Plant Sciences 2019, 65, 222-231. Publisher's VersionAbstract
Tef (Eragrostis tef (Zucc.) Trotter) is a C4 annual cereal, common in Ethiopia, where it was presumably domesticated. Worldwide interest in tef cultivation and consumption has considerably increased in the last few decades because it is a gluten-free grain with high nutritional value. Here we report on the genetic diversity and heritability in a tef germplasm collection characterized in Israel. A total of 408 accessions of tef held in the Israel Gene Bank were grown in 2015 under common garden (screen-house) conditions for propagation and initial phenotyping. A diversity panel, consisting of 273 accessions representing the entire collection's range of phenotypic diversity, was assembled and evaluated in small field plots in 2016. Further evaluation was conducted in 2017, in single-plant field plots (to eliminate admixtures). A representative plant (plot) was selected from each accession grown in 2017 and its single seed descent progenies where grown in 2018 in single-plant plots. The collection exhibited a wide diversity for each of the measured phenotypic traits, across all four environments. High grain yield was associated in most cases with early flowering time, whereas higher biomass was associated with late flowering. Heritability estimates, calculated based on the 2017, 2018 data, varied between 0.11 for plant biomass and 0.75 for 1000 grain weight. This study shows that tef can successfully grow and produce under irrigated Mediterranean conditions. The wide diversity available in our germplasm collection can provide the foundations for breeding new tef cultivars that are better adapted to these conditions. © Koninklijke Brill NV, Leiden, 2018.
Fatiukha, A. ; Klymiuk, V. ; Peleg, Z. ; Saranga, Y. ; Cakmak, I. ; Krugman, T. ; Korol, A. B. ; Fahima, T. . Variation In Phosphorus And Sulfur Content Shapes The Genetic Architecture And Phenotypic Associations Within The Wheat Grain Ionome. Plant Journal 2019. Publisher's VersionAbstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants. © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
2018
Ben-Zeev, S. ; Bimro, J. ; Barak, V. ; Saranga, Y. . Phenotypic Diversity And Heritability In Eragrostis Tef Under Irrigated Mediterranean Conditions. Israel Journal of Plant Sciences 2018, 65. Publisher's Version
2017
Merchuk-Ovnat, L. ; Fahima, T. ; Ephrath, J. E. ; Krugman, T. ; Saranga, Y. . Ancestral Qtl Alleles From Wild Emmer Wheat Enhance Root Development Under Drought In Modern Wheat. Frontiers in Plant Science 2017, 8, 703. Publisher's VersionAbstract
A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides) into the background of bread wheat (T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2’s agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and ‘BarNir’ were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a ‘cigar-roll’ seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40–100 cm) than ‘BarNir,’ with the most pronounced effect recorded in the 60–80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than ‘BarNir’ under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.
Cohen, Y. ; Alchanatis, V. ; Saranga, Y. ; Rosenberg, O. ; Sela, E. ; Bosak, A. . Mapping Water Status Based On Aerial Thermal Imagery: Comparison Of Methodologies For Upscaling From A Single Leaf To Commercial Fields. 2017, 18, 801 - 822. Publisher's VersionAbstract
Aerial thermal remote sensing can provide a means for collecting spatial plant water status data. Many studies have shown their potential in irrigation management but the adaptation of this technology is not straight forward. In this paper, knowledge accumulated in recent years on thermal imagery analysis methodology for water status mapping is summarized aiming at indicating alternatives to calculate the Crop Water Stress Index (CWSI) for commercial scale water status mapping. Based on literature overview, four forms of wet-baselines to calculate CWSI were selected, namely: artificial wet reference surface, two theoretical calculations and a statistical bio-indicator. These baselines were used to calculate CWSI based on multi-temporal aerial thermal images of cotton fields. CWSI based on a statistical bio-indicator and one of the theoretical wet-baselines provided the best correlations. It is argued though that the statistical one is preferable since it includes the plant characteristics and it is farmer-friendly. Based on bio-indicators, leaf water potential maps of three commercial fields were produced on several dates through the season. Water status spatial patterns were not static and the effect of static factors like sandy soil patches also changed through the season. The maps show the importance of in-season variability mapping for rational irrigation management. To improve current variable-rate irrigation, the concept of in-season irrigation management zones (IMZ) based on thermal-images should be considered and integrated with the delineation of static irrigation IMZ.
Naim-Feil, E. ; Toren, M. ; Aubert, G. ; Rubinstein, M. ; Rosen, A. ; Eshed, R. ; Sherman, A. ; Ophir, R. ; Saranga, Y. ; Abbo, S. . Drought Response And Genetic Diversity In Pisum Fulvum, A Wild Relative Of Domesticated Pea. Crop Science 2017, 57, 1145 - 1159. Publisher's VersionAbstract
Productivity of grain crops in semi-arid environments is often affected by drought, which is likely to increase due to predicted climate changes. Wild pea (Pisum fulvum Sibth. & Smith, Pf) accessions sampled across its ecological amplitude in Israel (350–850 mm annual precipitation) were used to assess the genetic diversity for drought responses. We hypothesized that native species evolving under Eastern Mediterranean climate carry adaptive traits to cope with drought stress. Accessions were classified according to single-nucleotide polymorphism variation pattern and habitat ecogeographic parameters. Significant differences were found between the accession groups, but grouping in both systems did not match. Subsequently, 52 Pf accessions and three domesticated pea (P. sativum L.) genotypes were evaluated during 2 yr under well-watered (∼580 mm) and water-limited (∼340 mm) treatments. Total dry matter, grain yield, harvest index, and average grain weight were higher in domesticated pea than wild Pf; however several Pf accessions exhibited lower drought susceptibility indices (i.e., greater stability across environments) than domesticated genotypes. Of special interest are a number of Pf genotypes in which low susceptibility to water stress was coupled with relatively high productivity. The sampling habitats of those low susceptibility–high productivity accessions are characterized by mild (400–530 mm) annual precipitation. Further sampling and evaluation of Pf from such locations may improve our understanding of pea drought adaptation and yield physiology.
2016
Merchuk-Ovnat, L. ; Barak, V. ; Fahima, T. ; Ordon, F. ; Lidzbarsky, G. A. ; Krugman, T. ; Saranga, Y. . Ancestral Qtl Alleles From Wild Emmer Wheat Improve Drought Resistance And Productivity In Modern Wheat Cultivars. 2016, 7, 452. Publisher's VersionAbstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.
Merchuk-Ovnat, L. ; Fahima, T. ; Krugman, T. ; Saranga, Y. . Ancestral Qtl Alleles From Wild Emmer Wheat Improve Grain Yield, Biomass And Photosynthesis Across Enviroinments In Modern Wheat. Special Issue: Water-Use Efficiency in Plants 2016, 251, 23 - 34. Publisher's VersionAbstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving drought resistance in domesticated wheat. Nevertheless, wild germplasm has not been widely used in wheat breeding for abiotic stress resilience. In the current study, a near isogenic line NIL-7A-B-2, introgressed with a drought-related QTL from wild emmer wheat on chromosome 7A, and its recurrent parent, bread wheat cv. BarNir, were investigated under four environments across 2 years—water-limited and well-watered conditions in a rain-protected screen-house (Year 1) and two commercial open field plots under ample precipitation (Year 2). NIL-7A-B-2 exhibited an advantage over BarNir in grain yield and biomass production under most environments. Further physiological analyses suggested that enhanced photosynthetic capacity and photochemistry combined with higher flag leaf area are among the factors underlying the improved productivity of NIL-7A-B-2. These were coupled with improved sink capacity in NIL-7A-B-2, manifested by greater yield components than its parental line. This study provides further support for our previous findings that introgression of wild emmer QTL alleles, using marker assisted selection, can enhance grain yield and biomass production across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of yield and drought resistance.