check
Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat

Citation:

Merchuk-Ovnat, L. ; Fahima, T. ; Krugman, T. ; Saranga, Y. . Ancestral Qtl Alleles From Wild Emmer Wheat Improve Grain Yield, Biomass And Photosynthesis Across Enviroinments In Modern Wheat. Special Issue: Water-Use Efficiency in Plants 2016, 251, 23 - 34.

Date Published:

2016

Abstract:

Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving drought resistance in domesticated wheat. Nevertheless, wild germplasm has not been widely used in wheat breeding for abiotic stress resilience. In the current study, a near isogenic line NIL-7A-B-2, introgressed with a drought-related QTL from wild emmer wheat on chromosome 7A, and its recurrent parent, bread wheat cv. BarNir, were investigated under four environments across 2 years—water-limited and well-watered conditions in a rain-protected screen-house (Year 1) and two commercial open field plots under ample precipitation (Year 2). NIL-7A-B-2 exhibited an advantage over BarNir in grain yield and biomass production under most environments. Further physiological analyses suggested that enhanced photosynthetic capacity and photochemistry combined with higher flag leaf area are among the factors underlying the improved productivity of NIL-7A-B-2. These were coupled with improved sink capacity in NIL-7A-B-2, manifested by greater yield components than its parental line. This study provides further support for our previous findings that introgression of wild emmer QTL alleles, using marker assisted selection, can enhance grain yield and biomass production across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of yield and drought resistance.

Website