Ma, X. ; Shatil-Cohen, A. ; Ben-Dor, S. ; Wigoda, N. ; Perera, I. Y. ; Im, Y. J. ; Diminshtein, S. ; Yu, L. ; Boss, W. F. ; Moshelion, M. ; et al. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?.
Planta 2014,
241, 741-755.
Publisher's VersionAbstractMain conclusion: Enhancing the membrane content of PtdInsP2, the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (Pf) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase (‘Ptase cells’) or human phosphatidylinositol (4) phosphate 5-kinase (‘PIPK cells’). The mean Pf of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive Pf: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased Pf by 12–30 μm s−1, while in the controls only by 3–4 μm s−1. (2) Cytosol acidification—known to inhibit aquaporins—lowered the Pf in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects. © 2014, Springer-Verlag Berlin Heidelberg.
Wigoda, N. ; Moshelion, M. ; Moran, N. Is the leaf bundle sheath a "smart flux valve" for K+ nutrition?.
Journal of Plant Physiology 2014,
171, 715-722.
Publisher's VersionAbstractEvidence has started to accumulate that the bundle sheath regulates the passage of water, minerals and metabolites between the mesophyll and the conducting vessels of xylem and phloem within the leaf veins which it envelops. Although potassium (K+) nutrition has been studied for several decades, and much is known about the uptake and recirculation of K+ within the plant, the potential regulatory role of bundle sheath with regard to K+ fluxes has just begun to be addressed. Here we have collected some facts and ideas about these processes. © 2014 Elsevier GmbH.
Shatil-Cohen, A. ; Sibony, H. ; Draye, X. ; Chaumont, F. ; Moran, N. ; Moshelion, M. Measuring the osmotic water permeability coefficient (pf) of spherical cells: Isolated plant protoplasts as an example.
Journal of Visualized Experiments 2014.
Publisher's VersionAbstractStudying AQP regulation mechanisms is crucial for the understanding of water relations at both the cellular and the whole plant levels. Presented here is a simple and very efficient method for the determination of the osmotic water permeability coefficient (Pf) in plant protoplasts, applicable in principle also to other spherical cells such as frog oocytes The first step of the assay is the isolation of protoplasts from the plant tissue of interest by enzymatic digestion into a chamber with an appropriate isotonic solution The second step consists of an osmotic challenge assay: protoplasts immobilized on the bottom of the chamber are submitted to a constant perfusion starting with an isotonic solution and followed by a hypotonic solution. The cell swelling is video recorded. In the third step, the images are processed offline to yield volume changes, and the time course of the volume changes is correlated with the time course of the change in osmolarity of the chamber perfusion medium, using a curve fitting procedure written in Matlab (the ‘PfFit’), to yield Pf. © JoVE 2006-2014. All Rights Reserved.
Yang, T. ; Zhang, S. ; Hu, Y. ; Wu, F. ; Hu, Q. ; Chen, G. ; Cai, J. ; Wu, T. ; Moran, N. ; Yu, L. ; et al. The role of a potassium transporter oshak5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels.
Plant Physiology 2014,
166, 945-959.
Publisher's VersionAbstractIn plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A b-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mM K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants. © 2014 American Society of Plant Biologists. All Rights Reserved.