Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Publications

2016
Ilani, T. ; Herrmann, I. ; Karnieli, A. ; Arye, G. . Characterization Of The Biosolids Composting Process By Hyperspectral Analysis. Waste Management 2016, 48, 106 - 114. Publisher's Version
Paz-Kagan, T. ; Ohana-Levi, N. ; Herrmann, I. ; Zaady, E. ; Henkin, Z. ; Karnieli, A. . Grazing Intensity Effects On Soil Quality: A Spatial Analysis Of A Mediterranean Grassland. Catena 2016, 146, 100 - 110. Publisher's Version
Friedlander, T. ; Prizak, R. ; Guet, C. C. ; Barton, N. H. ; Tkačik, G. . Intrinsic Limits To Gene Regulation By Global Crosstalk. 2016, 7, 12307. Publisher's VersionAbstract
Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements.
Mandel, T. ; Candela, H. ; Landau, U. ; Asis, L. ; Zelinger, E. ; Carles, C. C. ; Eshed Williams, L. . Differential Regulation Of Meristem Size, Morphology And Organization By The Erecta, Clavata And Class Iii Hd-Zip Pathways. Development 2016, 143, 1612. Publisher's VersionAbstract
The shoot apical meristem (SAM) of angiosperm plants is a small, highly organized structure that gives rise to all above-ground organs. The SAM is divided into three functional domains: the central zone (CZ) at the SAM tip harbors the self-renewing pluripotent stem cells and the organizing center, providing daughter cells that are continuously displaced into the interior rib zone (RZ) or the surrounding peripheral zone (PZ), from which organ primordia are initiated. Despite the constant flow of cells from the CZ into the RZ or PZ, and cell recruitment for primordium formation, a stable balance is maintained between the distinct cell populations in the SAM. Here we combined an in-depth phenotypic analysis with a comparative RNA-Seq approach to characterize meristems from selected combinations of clavata3 (clv3), jabba-1D (jba-1D) and erecta (er) mutants of Arabidopsis thaliana. We demonstrate that CLV3 restricts meristem expansion along the apical-basal axis, whereas class III HD-ZIP and ER pathways restrict meristem expansion laterally, but in distinct and possibly perpendicular orientations. Our k-means analysis reveals that clv3, jba-1D/+ and er lead to meristem enlargement by affecting different aspects of meristem function; for example, clv3 displays an increase in the stem cell population, whereas jba-1D/+ er exhibits an increase in mitotic activity and in the meristematic cell population. Our analyses demonstrate that a combined genetic and mRNA-Seq comparative approach provides a precise and sensitive method to identify cell type-specific transcriptomes in a small structure, such as the SAM.
Nida, H. ; Blum, S. ; Zielinski, D. ; Srivastava, D. A. ; Elbaum, R. ; Xin, Z. ; Erlich, Y. ; Fridman, E. ; Shental, N. . Highly Efficient De Novo Mutant Identification In A Sorghum Bicolor Tilling Population Using The Comseq Approach. The Plant JournalThe Plant JournalPlant J 2016, 86, 349 - 359. Publisher's VersionAbstract
Summary Screening large populations for carriers of known or de novo rare single nucleotide polymorphisms (SNPs) is required both in Targeting induced local lesions in genomes (TILLING) experiments in plants and in screening of human populations. We previously suggested an approach that combines the mathematical field of compressed sensing with next-generation sequencing to allow such large-scale screening. Based on pooled measurements, this method identifies multiple carriers of heterozygous or homozygous rare alleles while using only a small fraction of resources. Its rigorous mathematical foundations allow scalable and robust detection, and provide error correction and resilience to experimental noise. Here we present a large-scale experimental demonstration of our computational approach, in which we targeted a TILLING population of 1024 Sorghum bicolor lines to detect carriers of de novo SNPs whose frequency was less than 0.1%, using only 48 pools. Subsequent validation confirmed that all detected lines were indeed carriers of the predicted mutations. This novel approach provides a highly cost-effective and robust tool for biologists and breeders to allow identification of novel alleles and subsequent functional analysis.
AU - Fridman, Y. ; AU - Holland, N. ; Elbaum, R. ; AU - Savaldi-Goldstein, S. . High Resolution Quantification Of Crystalline Cellulose Accumulation In Arabidopsis Roots To Monitor Tissue-Specific Cell Wall Modifications. 2016, e53707. Publisher's VersionAbstract
Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth.
Shtein, I. ; Elbaum, R. ; Bar-On, B. . The Hygroscopic Opening Of Sesame Fruits Is Induced By A Functionally Graded Pericarp Architecture. Frontiers in Plant Science 2016, 7, 1501. Publisher's VersionAbstract
To enhance the distribution of their seeds, plants often utilize hygroscopic deformations that actuate dispersal mechanisms. Such movements are based on desiccation-induced shrinkage of tissues in predefined directions. The basic hygroscopic deformations are typically actuated by a bi-layer configuration, in which shrinking of an active tissue layer is resisted by a stiff layer, generating a set of basic movements including bending, coiling, and twisting. In this study, we investigate a new type of functionally graded hygroscopic movement in the fruit (capsule) of sesame (Sesamum indicum L.). Microscopic observations of the capsules showed that the inner stiff endocarp layer is built of a bilayer of transverse (i.e., circumferential) and longitudinal fiber cells with the layers positioned in a semi-circle, one inside the other. The outer mesocarp layer is made of soft parenchyma cells. The thickness of the fibrous layers and of the mesocarp exhibits a graded architecture, with gradual changes in their thickness around the capsule circumference. The cellulose microfibrils in the fiber cell walls are lying parallel to the cell long axis, rendering them stiff. The outer mesocarp layer contracted by 300% as it dried. Removal of this outer layer inhibited the opening movement, indicating that it is the active tissue. A biomechanical hygro-elastic model based on the relative thicknesses of the layers successfully simulated the opening curvature. Our findings suggest that the sesame capsules possess a functionally graded architecture, which promotes a non-uniform double-curvature hygroscopic bending movement. In contrast to other hygroscopic organs described in the literature, the sesame capsule actuating and resisting tissues are not uniform throughout the device, but changing gradually. This newly described mechanism can be exploited in bio-inspired designs of novel actuating platforms.
Efroni, I. ; Birnbaum, K. D. . The Potential Of Single-Cell Profiling In Plants. 2016, 17, 65. Publisher's VersionAbstract
Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.
Efroni, I. ; Mello, A. ; Nawy, T. ; Ip, P. - L. ; Rahni, R. ; DelRose, N. ; Powers, A. ; Satija, R. ; Birnbaum, K. D. . Root Regeneration Triggers An Embryo-Like Sequence Guided By Hormonal Interactions. 2016, 165, 1721 - 1733. Publisher's VersionAbstract
SummaryPlant roots can regenerate after excision of their tip, including the stem cell niche. To determine which developmental program mediates such repair, we applied a combination of lineage tracing, single-cell RNA sequencing, and marker analysis to test different models of tissue reassembly. We show that multiple cell types can reconstitute stem cells, demonstrating the latent potential of untreated plant cells. The transcriptome of regenerating cells prior to stem cell activation resembles that of an embryonic root progenitor. Regeneration defects are more severe in embryonic than in adult root mutants. Furthermore, the signaling domains of the hormones auxin and cytokinin mirror their embryonic dynamics and manipulation of both hormones alters the position of new tissues and stem cell niche markers. Our findings suggest that plant root regeneration follows, on a larger scale, the developmental stages of embryonic patterning and is guided by spatial information provided by complementary hormone domains.
Rahni, R. ; Efroni, I. ; Birnbaum, K.  D. . A Case For Distributed Control Of Local Stem Cell Behavior In Plants. 2016, 38, 635 - 642. Publisher's VersionAbstract
The root meristem has a centrally located group of mitotically quiescent cells, to which current models assign a stem cell organizer function. However, evidence is emerging for decentralized control of stem cell activity, whereby self-renewing behavior emerges from the lack of cell displacement at the border of opposing differentiation gradients. We term this a “stagnation” model due to its reliance on passive mechanics. The position of stem cells is established by two opposing axes that reciprocally control each other's differentiation. Such broad tissue organization programs would allow plants, like some animal systems, to rapidly reconstitute stem cells from non-stem-cell tissues.
Alvarez, J. P. ; Furumizu, C. ; Efroni, I. ; Eshed, Y. ; Bowman, J. L. . Active Suppression Of A Leaf Meristem Orchestrates Determinate Leaf Growth. eLife 2016, 5, e15023. Publisher's VersionAbstract
Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.
Pinhasi van-Oss, R. ; Sherman, A. ; Zhang, H. - B. ; Vandemark, G. ; Coyne, C. ; Abbo, S. . Vernalization Response Of Domesticated × Wild Chickpea Progeny Is Subject To Strong Genotype By Environment Interaction. Plant BreedingPlant BreedingPlant Breed 2016, 135, 102 - 110. Publisher's VersionAbstract
Abstract Vernalization insensitivity is a key feature of domesticated chickpea, and its genetic basis is not well understood. We studied vernalization response among hybrid progeny derived from two domesticated ? wild crosses. The wild parents are vernalization-sensitive, late-flowering genotypes while both domesticated parents are vernalization insensitive. Parental lines and hybrid progeny were tested with (28 days at 4°C) and without vernalization (control). The difference in mean days to flower (?DTF) between control and vernalization treatments was used to assess the flowering vernalization response. A wide range of ?DTF values was observed among the hybrid progeny. Strong genotype by environment interaction effect on ?DTF was observed for the parental accessions and hybrid progeny. We used the ?DTF values to select vernalization responsive and non-responsive progeny lines. However, the genotype ? environment interaction strongly interfered with our selection. Chickpea breeders interested in using the wild progenitor as a donor of exotic traits should be aware of the possibility of introducing vernalization response alleles that may alter the phenology of their breeding materials in an unpredictable manner.
Golani, M. ; Frenkel, O. ; Bornstein, M. ; Shulhani, R. ; Abbo, S. ; Shtienberg, D. . Prevalence, Development, And Significance Of Ascochyta Blight Caused By Peyronellaea Pinodes In Pisum Elatius Populations Growing In Natural Ecosystems. Phytopathology™Phytopathology™ 2016, 106, 833 - 841. Publisher's VersionAbstract
Wild Pisum populations prevail in Israel in regions with diverse climatic conditions. A comprehensive survey was conducted in the winters of 2007?08 and 2008?09 at two sites in northern Israel, aiming to (i) document the density of Pisum elatius plants in natural ecosystems and elucidate factors related to their initial infection by Ascochyta blight and (ii) determine the factors governing disease development over time on individual plants. The surveyors identified P. elatius plants growing in designated quadrats, inspected each plant visually, and recorded the incidence and severity of its Ascochyta blight symptoms. Ascochyta blight, caused by Peyronellaea pinodes, was ubiquitous in Pisum elatius populations at both survey sites in both seasons. However, the total leaf area exhibiting disease symptoms of individual plants was very low, and stem and pod infections were rarely observed. Based on analyses of the survey data, it was suggested that, in natural ecosystems, the teleomorph stage of Peyronellaea pinodes serves as the main source of the primary and the secondary inoculum of the disease. In addition, it was found that infected leaves dropped off soon after infection, thereby precluding development of stem lesions. The plants continued growing and did not die; thus, they overcame the disease and could be considered ?cured?. This phenomenon was examined and confirmed in artificially inoculated, potted-plant experiments. It would be worthwhile to exploit the potential of this unique resistance mechanism as a tool for Ascochyta blight management in pea breeding.Wild Pisum populations prevail in Israel in regions with diverse climatic conditions. A comprehensive survey was conducted in the winters of 2007?08 and 2008?09 at two sites in northern Israel, aiming to (i) document the density of Pisum elatius plants in natural ecosystems and elucidate factors related to their initial infection by Ascochyta blight and (ii) determine the factors governing disease development over time on individual plants. The surveyors identified P. elatius plants growing in designated quadrats, inspected each plant visually, and recorded the incidence and severity of its Ascochyta blight symptoms. Ascochyta blight, caused by Peyronellaea pinodes, was ubiquitous in Pisum elatius populations at both survey sites in both seasons. However, the total leaf area exhibiting disease symptoms of individual plants was very low, and stem and pod infections were rarely observed. Based on analyses of the survey data, it was suggested that, in natural ecosystems, the teleomorph stage of Peyronellaea pinodes serves as the main source of the primary and the secondary inoculum of the disease. In addition, it was found that infected leaves dropped off soon after infection, thereby precluding development of stem lesions. The plants continued growing and did not die; thus, they overcame the disease and could be considered ?cured?. This phenomenon was examined and confirmed in artificially inoculated, potted-plant experiments. It would be worthwhile to exploit the potential of this unique resistance mechanism as a tool for Ascochyta blight management in pea breeding.
Golani, M. ; Abbo, S. ; Sherman, A. ; Frenkel, O. ; Shtienberg, D. . The Temperature Response And Aggressiveness Of Peyronellaea Pinodes Isolates Originating From Wild And Domesticated Pisum Sp. In Israel. Phytopathology™Phytopathology™ 2016, 106, 824 - 832. Publisher's VersionAbstract
Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.
Tal, Y. ; Anavi, S. ; Reisman, M. ; Samach, A. ; Tirosh, O. ; Troen, A. M. . The Neuroprotective Properties Of A Novel Variety Of Passion Fruit. Journal of Functional Foods 2016, 23, 359 - 369. Publisher's VersionAbstract
Passion fruit is a commercially important crop. The neuroprotective activity of fruit extracts from two hybrid lines of antioxidant ester thiol-rich Passiflora edulis Sims, the commercial “Passion Dream” and novel cultivar 428 (“Dena”) line were studied. Crude extracts from line 428 displayed the strongest dose-dependent neuroprotective activity, preventing glutamate induced cell-death, mitochondrial depolarization and glutathione depletion, when added to the medium of cultured HT4 neurons (p < 0.05). Supplementing diet of mice with the 428 fruit-extract improved survival of dopaminergic neurons by 60% in mice injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) compared to control-fed MPTP-injected mice (p < 0.05). The neuroprotection conferred by passion fruit extracts in vivo and in vitro shows promise for further research into their bioactive potential for medical exploitation.
Zingerman-Koladko, I. ; Khayat, M. ; Harapin, J. ; Shoseyov, O. ; Gruenbaum, Y. ; Salman, A. ; Medalia, O. ; Ben-Harush, K. . The Assembly Of C. Elegans Lamins Into Macroscopic Fibers. J Mech Behav Biomed Mater 2016, 63, 35-43.Abstract
Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.
Rosental, L. ; Perelman, A. ; Nevo, N. ; Toubiana, D. ; Samani, T. ; Batushansky, A. ; Sikron, N. ; Saranga, Y. ; Fait, A. . Environmental And Genetic Effects On Tomato Seed Metabolic Balance And Its Association With Germination Vigor. BMC Genomics 2016, 17, 1047.Abstract
BACKGROUND: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. RESULTS: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. CONCLUSIONS: An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.
Shwartz, I. ; Levy, M. ; Ori, N. ; Bar, M. . Hormones In Tomato Leaf Development. Dev Biol 2016, 419, 132-142.Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Abitbol, T. ; Rivkin, A. ; Cao, Y. ; Nevo, Y. ; Abraham, E. ; Ben-Shalom, T. ; Lapidot, S. ; Shoseyov, O. . Nanocellulose, A Tiny Fiber With Huge Applications. Curr Opin Biotechnol 2016, 39, 76-88.Abstract
Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering due to its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. We discuss the main areas of nanocellulose research: photonics, films and foams, surface modifications, nanocomposites, and medical devices. These tiny nanocellulose fibers have huge potential in many applications, from flexible optoelectronics to scaffolds for tissue regeneration. We hope to impart the readers with some of the excitement that currently surrounds nanocellulose research, which arises from the green nature of the particles, their fascinating physical and chemical properties, and the diversity of applications that can be impacted by this material.
Ofner, I. ; Lashbrooke, J. ; Pleban, T. ; Aharoni, A. ; Zamir, D. . Solanum Pennellii Backcross Inbred Lines (Bils) Link Small Genomic Bins With Tomato Traits. Plant J 2016, 87, 151-60.Abstract
We present a resource for fine mapping of traits derived from the wild tomato species Solanum pennellii (LA0716). The population of backcross inbred lines (BILs) is composed of 446 lines derived after a few generations of backcrosses of the wild species with cultivated tomato (cultivar M82; LA3475), followed by more than seven generations of self-pollination. The BILs were genotyped using the 10K SOL-CAP single nucleotide polymorphism (SNP) -Chip, and 3700 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs carry, on average, 2.7 introgressions per line, with a mean introgression length of 11.7 Mbp. Whereas the classic 76 introgression lines (ILs) partitioned the genome into 106 mapping bins, the BILs generated 633 bins, thereby enhancing the mapping resolution of traits derived from the wild species. We demonstrate the power of the BILs for rapid fine mapping of simple and complex traits derived from the wild tomato species.