check
Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress

Citation:

Bacher, H. ; Zhu, F. ; Gao, T. ; Liu, K. ; Dhatt, B. K. ; Awada, T. ; Zhang, C. ; Distelfeld, A. ; Yu, H. ; Peleg, Z. ; et al. Wild Emmer Introgression Alters Root-To-Shoot Growth Dynamics In Durum Wheat In Response To Water Stress. PLANT PHYSIOLOGY 2021, 187, 1149-1162.

Date Published:

NOV

Abstract:

Water deficit during the early vegetative growth stages of wheat (Triticum) can limit shoot growth and ultimately impact grain productivity. Introducing diversity in wheat cultivars to enhance the range of phenotypic responses to water limitations during vegetative growth can provide potential avenues for mitigating subsequent yield losses. We tested this hypothesis in an elite durum wheat background by introducing a series of introgressions from a wild emmer (Triticum turgidum ssp. dicoccoides) wheat. Wild emmer populations harbor rich phenotypic diversity for drought-adaptive traits. To determine the effect of these introgressions on vegetative growth under water-limited conditions, we used image-based phenotyping to catalog divergent growth responses to water stress ranging from high plasticity to high stability. One of the introgression lines exhibited a significant shift in root-to-shoot ratio in response to water stress. We characterized this shift by combining genetic analysis and root transcriptome profiling to identify candidate genes (including a root-specific kinase) that may be linked to the root-to-shoot carbon reallocation under water stress. Our results highlight the potential of introducing functional diversity into elite durum wheat for enhancing the range of water stress adaptation. Wild emmer introgressions in wheat introduce divergent water stress responses associated with a shift in root-to-shoot growth dynamics for enhanced stress adaptation.