check
In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network

Citation:

Fan, P. ; Miller, A. M. ; Schilmiller, A. L. ; Liu, X. ; Ofner, I. ; Jones, A. D. ; Zamir, D. ; Last, R. L. . In Vitro Reconstruction And Analysis Of Evolutionary Variation Of The Tomato Acylsucrose Metabolic Network. Proceedings of the National Academy of Sciences of the United States of America 2016, 113, E239-E248.

Abstract:

Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330-or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)-and Solyc04g012020 (Sl-ASAT2). These enzymes were used.in concert with two previously identified BAHD acyltransferases. to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated andwild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes.

Website