check
Regeneration of grade 3 ankle sprain, using the recombinant human amelogenin protein (rHAM+) in a rat model | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Regeneration of grade 3 ankle sprain, using the recombinant human amelogenin protein (rHAM+) in a rat model

Citation:

Hanhan, S. ; Goren, K. ; Rivkin, A. ; Saba, F. ; Nevo, H. ; Dar, N. ; Shilo, D. ; Liebergall, M. ; Shoseyov, O. ; Deutsch, D. ; et al. Regeneration Of Grade 3 Ankle Sprain, Using The Recombinant Human Amelogenin Protein (Rham+) In A Rat Model. Journal of Orthopaedic ResearchJournal of Orthopaedic ResearchJ Orthop Res 2021, 39, 1540 - 1547.

Date Published:

2021

Abstract:

Abstract Lateral ligament tears, also known as high-grade ankle sprains, are common, debilitating, and usually heal slowly. Ten to thirty percent of patients continue to suffer from chronic pain and ankle instability even after 3 to 9 months. Previously, we showed that the recombinant human amelogenin (rHAM+) induced regeneration of fully transected rat medial collateral ligament, a common proof-of-concept model. Our aim was to evaluate whether rHAM+ can regenerate torn ankle calcaneofibular ligament (CFL), an important component of the lateral ankle stabilizers. Right CFLs of Sabra rats were transected and treated with 0, 0.5, or 1?µg/µL rHAM+ dissolved in propylene glycol alginate (PGA). Results were compared with the normal group, without surgery. Healing was evaluated 12 weeks after treatment by mechanical testing (ratio between the right and left, untransected ligaments of the same rat), and histology including immunohistochemical staining of collagen I and S100. The mechanical properties, structure, and composition of transected ligaments treated with 0.5??g/?L rHAM+ (experimental) were similar to untransected ligaments. PGA (control) treated ligaments were much weaker, lax, and unorganized compared with untransected ligaments. Treatment with 1??g/?L rHAM+ was not as efficient as 0.5??g/?L rHAM+. Normal arrangement of collagen I fibers and of proprioceptive nerve endings, parallel to the direction of the force, was detected in ligaments treated with 0.5??g/?L rHAM+, and scattered arrangement, resembling scar tissue, in control ligaments. In conclusion, we showed that rHAM+ induced significant mechanical and structural regeneration of torn rat CFLs, which might be translated into treatment for grades 2 and 3 ankle sprain injuries.

Notes:

https://doi.org/10.1002/jor.24718

Publisher's Version

Last updated on 12/29/2021