check
Rain-based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems - Acacia saligna as a model. | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Rain-based soil solarization for reducing the persistent seed banks of invasive plants in natural ecosystems - Acacia saligna as a model.

Citation:

Cohen, O. ; Bar Kutiel, P. ; Gamliel, A. ; Katan, J. ; Kurzbaum, E. ; Weber, G. ; Schubert, I. ; Riov, J. . Rain-Based Soil Solarization For Reducing The Persistent Seed Banks Of Invasive Plants In Natural Ecosystems - Acacia Saligna As A Model. Pest Manag Sci 2018.

Date Published:

2018 Dec 21

Abstract:

BACKGROUND: The large persistent seed bank of invasive plants is a significant obstacle to restoration programs. Soil solarization was demonstrated to be an effective method for reducing the seed bank of Australian acacias. However, the use of this method in natural habitats might be limited due to the requirement to moisten the soil by irrigation. The present study examined the possibility of replacing irrigation by trapping the soil moisture caused by the last rainfall, i.e. rain-based soil solarization (RBS). RESULTS: Exposure of Acacia saligna seeds to 57 C at 20 % soil moisture for 68 h caused an almost complete loss of seed viability. Similarly, RBS treatment significantly reduced the viability of A. saligna seeds buried at a soil depth of 1-19 cm as well as the seed density in the natural seed bank, and almost completely eliminated seedling emergence from the natural seed banks of A. saligna and other environmental weeds. CONCLUSION: Our results indicate that RBS is an effective method for reducing the seed bank of invasive plants in natural habitats located in various climate regions characterized by different soil types. This is the first demonstration of a successful application of RBS for soil disinfestation. This article is protected by copyright. All rights reserved.

Last updated on 01/01/2020