check
Measuring the Hydraulic Conductivity of Grass Root Systems | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Measuring the Hydraulic Conductivity of Grass Root Systems

Citation:

Gal, A. ; Hendel, E. ; Peleg, Z. ; Schwartz, N. ; Sade, N. . Measuring The Hydraulic Conductivity Of Grass Root Systems. Current Protocols in Plant Biology 2020, 5, e20110.

Abstract:

Abstract Root-system hydraulic conductivity (RSHC) is an important physiological characteristic that describes the inherent ability of roots to conduct water across a water-potential gradient between the root and the stem xylem. RSHC is commonly used as an indicator of plant functioning and adaptability to a given environment. A simple, fast, and easy-to-use protocol is described for the quantification of RSHC at the seedling stage in two important monocot species grown in hydroponic solution: Setaria viridis, a C4 model plant, and wheat, a C3 crop plant. This protocol can also be easily modified for use with almost any grass species and environmental treatments, such as salinity or hormone treatments. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Setaria hydrostatic root-system hydraulic conductivity Alternate Protocol: Measuring the root conductivity of young plants with soft stems

Website