Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis

Citation:

Roth, O. ; Alvarez, J. P. ; Levy, M. ; Bowman, J. L. ; Ori, N. ; Shani, E. . The Knoxi Transcription Factor Shoot Meristemless Regulates Floral Fate In Arabidopsis. Plant Cell 2018, 30, 1309-1321.

Date Published:

2018 06

Abstract:

Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. loss-of-function mutants arrest shortly after germination; therefore, the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing in the () expression domain in the mutant background resulted in a leafy-flower phenotype, and an intermediate allele enhanced the flower meristem identity phenotype of Transcriptional profiling of perturbation suggested that STM activity affects multiple floral fate genes, among them the F-box protein-encoding gene (). In agreement with this notion, enhanced the floral fate phenotype, and ectopic expression rescued the leafy flowers in genetic backgrounds with compromised and activities. This work suggests a genetic mechanism that underlies the activity of in the specification of flower meristem identity.

Last updated on 07/08/2019