Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Highly charged cellulose nanocrystals applied as a water treatment flocculant

Citation:

Morantes, D. ; Muñoz, E. ; Kam, D. ; Shoseyov, O. . Highly Charged Cellulose Nanocrystals Applied As A Water Treatment Flocculant. Nanomaterials 2019, 9.

Abstract:

Various cellulosic materials have replaced petroleum-derived polymers, offering natural and sustainable alternatives. Among them, cellulose nanocrystals (CNC) feature an easily modifiable surface, enabling the exploration of a wide spectrum of applications. In this work, the quaternary agent 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) was used as a cationic graft on CNCs, to form a novel water treatment flocculant. The resulting material was chemically and structurally characterized by the determination of Zeta potential; degree of substitution by elemental analysis; hydrodynamic size by dynamic light scattering (DLS) and infrared spectroscopy with Fourier Transform Infrared (FT-IR); and X-ray diffraction (XRD). The flocculation capacity of cationic cellulose nanocrystals (CNC-EPTMAC) was evaluated in a jar test filled with an 0.25 wt.% silica (SiO2) suspension. CNC-EPTMAC proved to be an effective water treatment flocculant, reducing turbidity by up to 99.7% at a concentration of only 2 ppm. This work demonstrates a natural and environmentally sustainable alternative to homologous commercial flocculants. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Website