Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Foliar Delivery of siRNA Particles for Treating Viral Infections in Agricultural Grapevines

Citation:

Avital, A. ; Muzika, N. S. ; Persky, Z. ; Bar, G. ; Michaeli, Y. ; Fridman, Y. ; Karny, A. ; Shklover, J. ; Shainsky, J. ; Savaldi-Goldstein, S. ; et al. Foliar Delivery Of Sirna Particles For Treating Viral Infections In Agricultural Grapevines. Advanced Functional Materials 2021, 31, 2101003.

Abstract:

Abstract Grapevine leafroll disease (GLD) is a globally spreading viral infection that causes major economic losses by reducing crop yield, plant longevity, and berry quality, with no effective treatment. Grapevine leafroll associated virus-3 (GLRaV-3) is the most severe, prevalent GLD strain affecting wine production. Here, the ability of RNA interference (RNAi), a non-GMO gene-silencing pathway, to treat GLRaV-3 in infected Cabernet Sauvignon grapevines is evaluated. Lipid-modified polyethylenimine (lmPEI) is synthesized as the carrier for long double-stranded RNA (dsRNA, 250-bp-long) that targets RNA polymerase and coat protein is a gene target that are conserved in the GLRaV-3 genome. Self-assembled dsRNA–lmPEI particles, 220 nm in diameter, display inner ordered domains spaced 7.3 ± 2 nm from one another, correlating to lmPEI wrapping spirally around the dsRNA. The particles effectively protect RNA from degradation by ribonucleases and show to increase uptake rate into plant cells as a result of the lipid component comprising the RNA carrier. In three field experiments, a single dose of foliar sprayed treatment of the RNA-particles knocks down GLRaV-3 titer, and multiple doses of the treatment keep the viral titer at baseline and trigger recovery of the vine and berries. This study demonstrates RNAi as a promising platform for treating viral diseases in agriculture.

Website