Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool)

Citation:

Sperling, O. ; Lazarovitch, N. ; Schwartz, A. ; Shapira, O. . Effects Of High Salinity Irrigation On Growth, Gas-Exchange, And Photoprotection In Date Palms (Phoenix Dactylifera L., Cv. Medjool). Environmental and Experimental Botany 2014, 99, 100-109.

Abstract:

Date palms are widely cultivated in arid Mediterranean regions and require large quantities of water to produce commercial fruit yields. In these regions the plantations are commonly irrigated with low-quality water, which results in reduced growth and yields. To study the effect of using saline water for irrigation, date palm seedlings (cv. Medjool) were subjected to long-term irrigation treatments with water containing between 2 and 105mM NaCl. The effect of saline irrigation was determined according to leaf gas exchange, chlorophyll a fluorescence, growth parameters and the distribution of key minerals in different plant organs. High salinity decreased plant growth and increased Na+ accumulation in the roots and lower stem. However, Na+ ions were mostly excluded from the sensitive photosynthetic tissues of the leaf. Thus, the reduction in the CO2 assimilation rate was primarily attributed to a reduced stomatal conductance. Consistent with this finding, the photosynthetic response to variable intercellular CO2 concentrations (A/Ci curves) revealed no permanent damage to the photosynthetic apparatus and implicated developed photoprotective mechanisms. Independent of salinity treatment, 80% of the energy absorbed by the leaf was directed to non-photochemical quenching, as presented in electron-equivalent units. Functioning at full capacity, the non-photochemical mechanism could not compensate for all the excess irradiance. Thus, of the remaining absorbed energy, a significant portion was directed to photochemical O2 related processes, rather than CO2 prevented photoinhibition. The exclusion of toxic ions and O2-dependent energy dissipation maintained photosynthetic efficiency and supported survival under salt stress. © 2013 Elsevier B.V.

Website