check
BactoSpin: Novel Technology for Rapid Bacteria Detection and Antibiotic Susceptibility Testing | Plant Sciences and Genetics in Agriculture

Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

BactoSpin: Novel Technology for Rapid Bacteria Detection and Antibiotic Susceptibility Testing

Citation:

Shumeiko, V. ; Hidas, G. ; Nowogrodski, C. ; Pinto, Y. ; Gofrit, O. ; Duvdevani, M. ; Shoseyov, O. . Bactospin: Novel Technology For Rapid Bacteria Detection And Antibiotic Susceptibility Testing. Sensors 2021, 21.

Abstract:

Inappropriate use of antibiotics is one of the leading causes of the increasing numbers of resistant bacteria strains, resulting in 700,000 deaths worldwide each year. Reducing unnecessary use of antibiotics and choosing the most effective antibiotics instead of broad-spectrum drugs will slow the arms race between germs and humans. Urinary tract infections (UTIs) are among the most common bacterial infections. Currently, accurate diagnosis of UTI requires approximately 48 h from the time of urine sample collection until antibiotic susceptibility test (AST) results. This work presents a rapid bacterial detection device that integrates a centrifuge, microscope, and incubator. Two disposable microfluidic chips were developed. The first chip was designed for bacteria concentration, detection, and medium exchange. A second multi-channel chip was developed for AST. This chip contains superhydrophobic and hydrophilic coatings to ensure liquid separation between the channels without the need for valves. The designed chips supported the detection of E. coli at a concentration as low as 5 × 103 cells/mL within 5 min and AST in under 2 h. AST was also successfully performed with Klebsiella pneumonia isolated from a human urine sample. In addition, machine-learning-based image recognition was shown to reduce the required time for AST and to provide results within 1 h for E. coli cells. Thus, the BactoSpin device can serve as an efficient and rapid platform for UTI diagnostics and AST.

Website