Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Publications

2019
Qubaja, R. ; Grünzweig, J. ; Rotenberg, E. ; Yakir, D. . Evidence For Large Carbon Sink And Long Residence Time In Semiarid Forests Based On 15 Year Flux And Inventory Records. Global Change Biology 2019. Publisher's VersionAbstract
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover  18% of the global land area. The forest accumulated 145–160 g C m−2 year−1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m−2 year−1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil ( 71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester  0.4 Pg C/year over several decades. © 2019 John Wiley & Sons Ltd
Halbritter, A. H. ; De Boeck, H. J. ; Eycott, A. E. ; Reinsch, S. ; Robinson, D. A. ; Vicca, S. ; Berauer, B. ; Christiansen, C. T. ; Estiarte, M. ; Grünzweig, J. ; et al. The Handbook For Standardized Field And Laboratory Measurements In Terrestrial Climate Change Experiments And Observational Studies (Climex). Methods in Ecology and Evolution 2019. Publisher's VersionAbstract
Climate change is a world-wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high-quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re-use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. To overcome these challenges, we collected best-practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re-use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re-use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second-order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world. © 2019 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.
De Boeck, H. J. ; Bloor, J. M. G. ; Aerts, R. ; Bahn, M. ; Beier, C. ; Emmett, B. A. ; Estiarte, M. ; Grünzweig, J. ; Halbritter, A. H. ; Holub, P. ; et al. Understanding Ecosystems Of The Future Will Require More Than Realistic Climate Change Experiments – A Response To Korell Et Al. Global Change Biology 2019. Publisher's Version
Arun, P. V. ; Herrmann, I. ; Budhiraju, K. M. ; Karnieli, A. . Convolutional Network Architectures For Super-Resolution/Sub-Pixel Mapping Of Drone-Derived Images. Pattern Recognition 2019, 88, 431-446. Publisher's VersionAbstract
Spatial resolution enhancement is a pre-requisite for integrating unmanned aerial vehicle (UAV) datasets with the data from other sources. However, the mobility of UAV platforms, along with radiometric and atmospheric distortions, makes the task difficult. In this paper, various convolutional neural network (CNN) architectures are explored for resolving the issues related to sub-pixel classification and super-resolution of drone-derived datasets. The main contributions of this work are: 1) network-inversion based architectures for super-resolution and sub-pixel mapping of drone-derived images taking into account their spectral-spatial characteristics and the distortions prevalent in them 2) a feature-guided transformation for regularizing the inversion problem 3) loss functions for improving the spectral fidelity and inter-label compatibility of coarser to finer-scale mapping 4) use of multi-size kernel units for avoiding over-fitting. The proposed approach is the first of its kind in using neural network inversion for super-resolution and sub-pixel mapping. Experiments indicate that the proposed super-resolution approach gives better results in comparison with the sparse-code based approaches which generally result in corrupted dictionaries and sparse codes for multispectral aerial images. Also, the proposed use of neural network inversion, for projecting spatial affinities to sub-pixel maps, facilitates the consideration of coarser-scale texture and color information in modeling the finer-scale spatial-correlation. The simultaneous consideration of spectral bands, as proposed in this study, gives better super-resolution results when compared to the individual band enhancements. The proposed use of different data-augmentation strategies, for emulating the distortions, improves the generalization capability of the framework. Sensitivity of the proposed super-resolution and sub-pixel mapping frameworks with regard to the network parameters is thoroughly analyzed. The experiments over various standard datasets as well as those collected from known locations indicate that the proposed frameworks perform better when compared to the prominent published approaches. © 2018 Elsevier Ltd
Herrmann, I. ; Vosberg, S. K. ; Townsend, P. A. ; Conley, S. P. . Spectral Data Collection By Dual Field-Of-View System Under Changing Atmospheric Conditions—A Case Study Of Estimating Early Season Soybean Populations. Sensors (Switzerland) 2019, 19. Publisher's VersionAbstract
There is an increasing interest in using hyperspectral data for phenotyping and crop management while overcoming the challenge of changing atmospheric conditions. The Piccolo dual field-of-view system collects up- and downwelling radiation nearly simultaneously with one spectrometer. Such systems offer great promise for crop monitoring under highly variable atmospheric conditions. Here, the system’s utility from a tractor-mounted boom was demonstrated for a case study of estimating soybean plant populations in early vegetative stages. The Piccolo system is described and its performance under changing sky conditions are assessed for two replicates of the same experiment. Plant population assessment was estimated by partial least squares regression (PLSR) resulting in stable estimations by models calibrated and validated under sunny and cloudy or cloudy and sunny conditions, respectively. We conclude that the Piccolo system is effective for data collection under variable atmospheric conditions, and we show its feasibility of operation for precision agriculture research and potential commercial applications. © 2019, MDPI AG. All rights reserved.
Shelef, O. ; Summerfield, L. ; Lev-Yadun, S. ; Villamarin-Cortez, S. ; Sadeh, R. ; Herrmann, I. ; Rachmilevitch, S. . Thermal Benefits From White Variegation Of Silybum Marianum Leaves. Frontiers in Plant Science 2019, 10. Publisher's VersionAbstract
Leaves of the spiny winter annual Silybum marianum express white patches (variegation) that can cover significant surface areas, the outcome of air spaces formed between the epidermis and the green chlorenchyma. We asked: (1) what characterizes the white patches in S. marianum and what differs them from green patches? (2) Do white patches differ from green patches in photosynthetic efficiency under lower temperatures? We predicted that the air spaces in white patches have physiological benefits, elevating photosynthetic rates under low temperatures. To test our hypotheses we used both a variegated wild type and entirely green mutants. We grew the plants under moderate temperatures (20°C/10°C d/n) and compared them to plants grown under lower temperatures (15°C/5°C d/n). The developed plants were exposed to different temperatures for 1 h and their photosynthetic activity was measured. In addition, we compared in green vs. white patches, the reflectance spectra, patch structure, chlorophyll and dehydrin content, stomatal structure, plant growth, and leaf temperature. White patches were not significantly different from green patches in their biochemistry and photosynthesis. However, under lower temperatures, variegated wild-type leaves were significantly warmer than all-green mutants – possible explanations for that are discussed These findings support our hypothesis, that white variegation of S. marianum leaves has a physiological role, elevating leaf temperature during cold winter days. © 2019 Shelef, Summerfield, Lev-Yadun, Villamarin-Cortez, Sadeh, Herrmann and Rachmilevitch.
Kelly, G. ; Egbaria, A. ; Khamaisi, B. ; Lugassi, N. ; Attia, Z. ; Moshelion, M. ; Granot, D. . Guard-Cell Hexokinase Increases Water-Use Efficiency Under Normal And Drought Conditions. Frontiers in Plant Science 2019, 10. Publisher's VersionAbstract
Water is a limiting resource for many land plants. Most of the water taken up by plants is lost to the atmosphere through the stomata, which are adjustable pores on the leaf surface that allow for gas exchange between the plant and the atmosphere. Modulating stomatal activity might be an effective way to reduce plants’ water consumption and enhance their productivity under normal, as well as water-limiting conditions. Our recent discovery of stomatal regulation by sugars that is mediated by guard-cell hexokinase (HXK), a sugar-sensing enzyme, has raised the possibility that HXK might be used to increase plant water-use efficiency (WUE; i.e., carbon gain per unit of water). We show here that transgenic tomato and Arabidopsis plants with increased expression of HXK in their guard cells (GCHXK plants) exhibit reduced transpiration and higher WUE without any negative effects on growth under normal conditions, as well as drought avoidance and improved photosynthesis and growth under limited-water conditions. Our results demonstrate that exclusive expression of HXK in guard cells is an effective tool for improving WUE, and plant performance under drought. © Copyright © 2019 Kelly, Egbaria, Khamaisi, Lugassi, Attia, Moshelion and Granot.
Attia, Z. ; Dalal, A. ; Moshelion, M. . Vascular Bundle Sheath And Mesophyll Cells Modulate Leaf Water Balance In Response To Chitin. Plant Journal 2019. Publisher's VersionAbstract
Plants can detect pathogen invasion by sensing microbe-associated molecular patterns (MAMPs). This sensing process leads to the induction of defense responses. Numerous MAMP mechanisms of action have been described in and outside the guard cells. Here, we describe the effects of chitin, a MAMP found in fungal cell walls and insects, on the cellular osmotic water permeability (Pf) of the leaf vascular bundle-sheath (BS) and mesophyll cells (MCs), and its subsequent effect on leaf hydraulic conductance (Kleaf). BS is a parenchymatic tissue that tightly encases the vascular system. BS cells (BSCs) have been shown to influence Kleaf through changes in their Pf, for example, after sensing the abiotic stress response-regulating hormone abscisic acid. It was recently reported that, in Arabidopsis, the chitin receptors-like kinases, chitin elicitor receptor kinase 1 (CERK1) and LYSINE MOTIF RECEPTOR KINASE 5 (LYK5) are highly expressed in the BS as well as the neighboring mesophyll. Therefore, we studied the possible impact of chitin on these cells. Our results revealed that BSCs and MCs exhibit a sharp decrease in Pf in response to chitin treatment. In addition, xylem-fed chitin decreased Kleaf and led to stomatal closure. However, Atlyk5 mutant showed none of these responses. Complementing AtLYK5 in the BSCs (using the SCARECROW promoter) resulted in the response to chitin that was similar to that observed in the wild-type. These results suggest that BS play a role in the perception of apoplastic chitin and in initiating chitin-triggered immunity. © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
Elzinga, D. ; Sternburg, E. ; Sabbadin, D. ; Bartsch, M. ; Park, S. - Y. ; Vaidya, A. ; Mosquna, A. ; Kaundal, A. ; Wendeborn, S. ; Lachia, M. ; et al. Defining And Exploiting Hypersensitivity Hotspots To Facilitate Abscisic Acid Agonist Optimization. ACS Chemical Biology 2019, 14, 332-336. Publisher's VersionAbstract
Pyrabactin resistance 1 (PYR1) and related abscisic acid (ABA) receptors are new targets for manipulating plant drought tolerance. Here, we identify and use PYR1 hypersensitive mutants to define ligand binding hotspots and show that these can guide improvements in agonist potency. One hotspot residue defined, A160, is part of a pocket that is occupied by ABA's C6 methyl or by the toluyl methyl of the synthetic agonist quinabactin (QB). A series of QB analogues substituted at the toluyl position were synthesized and provide up to 10-fold gain in activity in vitro. Furthermore, we demonstrate that hypersensitive receptors can be used to improve the sensitivity of a previously described mammalian cell ABA-regulated transcriptional circuit by three orders of magnitude. Collectively, our data show that the systematic mapping of hypersensitivity sites in a ligand-binding pocket can help guide ligand optimization and tune the sensitivity of engineered receptors. © 2019 American Chemical Society.
Sun, Y. ; Harpazi, B. ; Wijerathna-Yapa, A. ; Merilo, E. ; de Vries, J. ; Michaeli, D. ; Gal, M. ; Cuming, A. C. ; Kollist, H. ; Mosquna, A. . A Ligand-Independent Origin Of Abscisic Acid Perception. Proceedings of the National Academy of Sciences of the United States of America 2019, 116, 24892-24899. Publisher's VersionAbstract
Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)–PROTEIN PHOSPHATASE 2C (PP2C)–SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a protein found in the algal sister lineage of land plants. We found that the algal PYL-homolog encoded by Zygnema circumcarinatum has basal, ligand-independent activity of PP2C repression, suggesting this to be an ancestral function. Similarly, a liverwort receptor possesses basal activity, but it is further activated by ABA. We propose that co-option of ABA to control a preexisting PP2C-SnRK2-dependent desiccation-tolerance pathway enabled transition from an all-or-nothing survival strategy to a hormone-modulated, competitive strategy by enabling continued growth of anatomically diversifying vascular plants in dehydrative conditions, enabling them to exploit their new environment more efficiently. © 2019 National Academy of Sciences. All rights reserved.
Sterlin, Y. ; Pri-Tal, O. ; Zimran, G. ; Park, S. - Y. ; Ben-Ari, J. ; Kourelis, J. ; Verstraeten, I. ; Gal, M. ; Cutler, S. R. ; Mosquna, A. . Optimized Small-Molecule Pull-Downs Define Mlbp1 As An Acyl-Lipid-Binding Protein. Plant Journal 2019, 98, 928-941. Publisher's VersionAbstract
Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA–PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 μm, which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants. © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
Shorinola, O. ; Kaye, R. ; Golan, G. ; Peleg, Z. ; Kepinski, S. ; Uauy, C. . Genetic Screening For Mutants With Altered Seminal Root Numbers In Hexaploid Wheat Using A High-Throughput Root Phenotyping Platform. G3: Genes, Genomes, Genetics 2019, 9, 2799-2809. Publisher's VersionAbstract
Roots are the main channel for water and nutrient uptake in plants. Optimization of root architecture provides a viable strategy to improve nutrient and water uptake efficiency and maintain crop productivity under water-limiting and nutrient-poor conditions. We know little, however, about the genetic control of root development in wheat, a crop supplying 20% of global calorie and protein intake. To improve our understanding of the genetic control of seminal root development in wheat, we conducted a high-throughput screen for variation in seminal root number using an exome-sequenced mutant population derived from the hexaploid wheat cultivar Cadenza. The screen identified seven independent mutants with homozygous and stably altered seminal root number phenotypes. One mutant, Cadenza0900, displays a recessive extra seminal root number phenotype, while six mutants (Cadenza0062, Cadenza0369, Cadenza0393, Cadenza0465, Cadenza0818 and Cadenza1273) show lower seminal root number phenotypes most likely originating from defects in the formation and activation of seminal root primordia. Segregation analysis in F2 populations suggest that the phenotype of Cadenza0900 is controlled by multiple loci whereas the Cadenza0062 phenotype fits a 3:1 mutant:wild-type segregation ratio characteristic of dominant single gene action. This work highlights the potential to use the sequenced wheat mutant population as a forward genetic resource to uncover novel variation in agronomic traits, such as seminal root architecture. Copyright © 2019 Shorinola et al.
Horesh, A. ; Igbariya, K. ; Peleg, Z. ; Lati, R. N. . Lpg Flaming-A Safe Post-Emergence Weed Control Tool For Direct Seeded And Bulb Onion. Agronomy 2019, 9. Publisher's VersionAbstract
The demand for pesticide-free food has increased the need for sustainable organic farming. Onion (Allium cepa L.) is an important vegetable crop cultivated worldwide. The available weed control tools for intra-row weeds following onion emergence are limited. This study aimed to evaluate the potential use of liquefied petroleum gas (LPG) flaming as a pre- and post-emergence weed control method for both direct-seeded onion seedlings and transplanted onion bulbs. The safety of cross-row, where the flames are targeted to the intra-row area from both sides of the row, and broadcast flaming for bulb onion was compared. Cross-row flaming at twelve days after planting had no effect on onion dry weight, while broadcast flaming-treated plants' dry weight was reduced by 36% as compared to controls. For the cross-row technique, the tested burners' angle (45° and 30°) and inter-burner distances (30 and 40 cm) had no impact on weed control efficacy, and similar control levels, between 55% (15 cm) and 45% (10 cm), were observed 15 cm from both sides of the row-center. Direct-seeded onion cultivars were treated at various growth stages. The pre-crop-emergence stage was completely safe for the crop, and the second leaf stage exhibited a wide range of tolerance levels to flaming treatment across the different onion cultivars, with dry weights ranging between 39 and 117% compared to non-treated control in the flaming sensitive and tolerant cultivars, respectively. These results were validated under field conditions using the two most tolerant cultivars (Orlando and Browny); no yield reductions were observed for either cultivar when treated from the third leaf stage. In bulb onion, flaming had no impact on dry weight of shoots or roots when applied from four weeks after planting. This study demonstrates, for the first time, the potential of using flaming as a post-emergence weed control tool for direct-seeded and bulb onion, and at earlier time points than previously shown. Cross-row flaming proved effective for controlling intra-row weeds and can lower weeding costs. Future research should evaluate the safety of sequential applications and test complementary control methods for the initial growth stages. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Horesh, A. ; Goldwasser, Y. ; Igbariya, K. ; Peleg, Z. ; Lati, R. N. . Propane Flaming As A New Approach To Control Mediterranean Invasive Weeds. Agronomy 2019, 9. Publisher's VersionAbstract
In recent decades, anthropogenic activity and climate changes have reshaped global weed dispersal and establishment in new territories. This study aimed to evaluate the effectiveness of propane flaming approach in the control of perennial invasive and native Mediterranean broadleaf and grass weeds. The invasive weeds, Cyperus rotundus, Sorghum halepense, and Ecballium elaterium, were treated multiple times with a single propane dose (2.5 kg propane km −1 ), using the broadcast technique. The local annual weeds, Sinapis arvensis, Lavatera trimestris, and Avena sativa, were treated once at five propane doses (0–2.5 kg propane km −1 ), using the cross-row technique. Dose-response analysis was performed. Three applications provided effective control (up to >90%) for all tested perennials, and affected seed and flower production in Sorghum halepense and Ecballium elaterium, respectively. However, the timing of the sequential application had a significant impact on the degree of control, in terms of dry weight reduction and seed production. Weed density had an impact on control efficacy but was only a significant determinant for Ecballium elaterium. Cross-row application was effective during early growth stages of broadleaf weeds (ED 50 < 1.2 kg propane km −1 ), but was less effective during later growth stages (ED 50 > 2.6 kg propane km −1 ). For grass weeds, both early and late application were ineffective (ED 50 > 4.1 kg propane km −1 ). More research is needed to optimize this weed control tactic for various cropping systems and weed species. Implementation of this novel approach into integrated weed management programs will increase the control efficacy of invasive weed under the projected climate changes and reduce the evolution of herbicide-resistant weeds. © 2019 by the authors.
Schleyer, G. ; Shahaf, N. ; Ziv, C. ; Dong, Y. ; Meoded, R. A. ; Helfrich, E. J. N. ; Schatz, D. ; Rosenwasser, S. ; Rogachev, I. ; Aharoni, A. ; et al. In Plaque-Mass Spectrometry Imaging Of A Bloom-Forming Alga During Viral Infection Reveals A Metabolic Shift Towards Odd-Chain Fatty Acid Lipids. Nature Microbiology 2019, 4, 527-538. Publisher's VersionAbstract
Tapping into the metabolic crosstalk between a host and its virus can reveal unique strategies employed during infection. Viral infection is a dynamic process that generates an evolving metabolic landscape. Gaining a continuous view into the infection process is highly challenging and is limited by current metabolomics approaches, which typically measure the average of the entire population at various stages of infection. Here, we took an innovative approach to study the metabolic basis of host–virus interactions between the bloom-forming alga Emiliania huxleyi and its specific virus. We combined a classical method in virology, the plaque assay, with advanced mass spectrometry imaging (MSI), an approach we termed ‘in plaque-MSI’. Taking advantage of the spatial characteristics of the plaque, we mapped the metabolic landscape induced during infection in a high spatiotemporal resolution, unfolding the infection process in a continuous manner. Further unsupervised spatially aware clustering, combined with known lipid biomarkers, revealed a systematic metabolic shift during infection towards lipids containing the odd-chain fatty acid pentadecanoic acid (C15:0). Applying ‘in plaque-MSI’ may facilitate the discovery of bioactive compounds that mediate the chemical arms race of host–virus interactions in diverse model systems. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
Mizrachi, A. ; Creveld, S. G. ; Shapiro, O. H. ; Rosenwasser, S. ; Vardi, A. . Light-Dependent Single-Cell Heterogeneity In The Chloroplast Redox State Regulates Cell Fate In A Marine Diatom. eLife 2019, 8. Publisher's VersionAbstract
Diatoms are photosynthetic microorganisms of great ecological and biogeochemical importance, forming vast blooms in aquatic ecosystems. However, we are still lacking fundamental understanding of individual cells sense and respond to diverse stress conditions, and what acclimation strategies employed during bloom dynamics. We investigated cellular responses to environmental stress at single-cell level using the roGFP sensor targeted to various organelles in the diatom Phaeodactylum tricornutum. We detected cell-to-cell variability using flow cytometry cell sorting and a microfluidics system for live imaging of roGFP oxidation dynamics. Chloroplast-targeted roGFP exhibited a light dependent, bi-stable oxidation pattern in response to H2O2 and high light, revealing distinct subpopulations of sensitive oxidized cells and resilient reduced cells. Early oxidation in the chloroplast preceded commitment to cell death, and can be used for sensing stress cues and regulating cell fate. propose that light-dependent metabolic heterogeneity regulates diatoms’ sensitivity to environmental stressors in the ocean. © 2019, eLife Sciences Publications Ltd. All Rights Reserved.
Rosenwasser, S. ; Sheyn, U. ; Frada, M. J. ; Pilzer, D. ; Rotkopf, R. ; Vardi, A. . Unmasking Cellular Response Of A Bloomforming Alga To Viral Infection By Resolving Expression Profiles At A Single-Cell Level. PLoS Pathogens 2019, 15. Publisher's VersionAbstract
Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and metabolome in order to provide essential building blocks to support the high metabolic demand for viral assembly and egress. Host response to viral infection can typically lead to diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral defense response. Nevertheless, there is a major bottleneck to discern between viral hijacking strategies and host defense responses when averaging bulk population response. Here we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific virus (EhV), an ecologically important host-virus model system in the ocean. We quantified host and virus gene expression on a single-cell resolution during the course of infection, using automatic microfluidic setup that captures individual algal cells and multiplex quantitate PCR. We revealed high heterogeneity in viral gene expression among individual cells. Simultaneous measurements of expression profiles of host and virus genes at a single-cell level allowed mapping of infected cells into newly defined infection states and allowed detection specific host response in a subpopulation of infected cell which otherwise masked by the majority of the infected population. Intriguingly, resistant cells emerged during viral infection, showed unique expression profiles of metabolic genes which can provide the basis for discerning between viral resistant and susceptible cells within heterogeneous populations in the marine environment. We propose that resolving host-virus arms race at a single-cell level will provide important mechanistic insights into viral life cycles and will uncover host defense strategies. © 2019 Rosenwasser et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Merchuk-Ovnat, L. ; Ovnat, Z. ; Amir-Segev, O. ; Kutsher, Y. ; Saranga, Y. ; Reuveni, M. . Coveragetool: A Semi-Automated Graphic Software: Applications For Plant Phenotyping. Plant Methods 2019, 15. Publisher's VersionAbstract
Background: Characterization and quantification of visual plant traits is often limited to the use of tools and software that were developed to address a specific context, making them unsuitable for other applications. CoverageTool is flexible multi-purpose software capable of area calculation in cm2, as well as coverage area in percentages, suitable for a wide range of applications. Results: Here we present a novel, semi-automated and robust tool for detailed characterization of visual plant traits. We demonstrate and discuss the application of this tool to quantify a broad spectrum of plant phenotypes/traits such as: tissue culture parameters, ground surface covered by annual plant canopy, root and leaf projected surface area, and leaf senescence area ratio. The CoverageTool software provides easy to use functions to analyze images. While use of CoverageTool involves subjective operator color selections, applying them uniformly to full sets of samples makes it possible to provide quantitative comparison between test subjects. Conclusion: The tool is simple and straightforward, yet suitable for the quantification of biological and environmental effects on a wide variety of visual plant traits. This tool has been very useful in quantifying different plant phenotypes in several recently published studies, and may be useful for many applications. © 2019 The Author(s).
Ben-Zeev, S. ; Bimro, J. ; Barak, V. ; Saranga, Y. . Phenotypic Diversity And Heritability In Eragrostis Tef Under Irrigated Mediterranean Conditions. Israel Journal of Plant Sciences 2019, 65, 222-231. Publisher's VersionAbstract
Tef (Eragrostis tef (Zucc.) Trotter) is a C4 annual cereal, common in Ethiopia, where it was presumably domesticated. Worldwide interest in tef cultivation and consumption has considerably increased in the last few decades because it is a gluten-free grain with high nutritional value. Here we report on the genetic diversity and heritability in a tef germplasm collection characterized in Israel. A total of 408 accessions of tef held in the Israel Gene Bank were grown in 2015 under common garden (screen-house) conditions for propagation and initial phenotyping. A diversity panel, consisting of 273 accessions representing the entire collection's range of phenotypic diversity, was assembled and evaluated in small field plots in 2016. Further evaluation was conducted in 2017, in single-plant field plots (to eliminate admixtures). A representative plant (plot) was selected from each accession grown in 2017 and its single seed descent progenies where grown in 2018 in single-plant plots. The collection exhibited a wide diversity for each of the measured phenotypic traits, across all four environments. High grain yield was associated in most cases with early flowering time, whereas higher biomass was associated with late flowering. Heritability estimates, calculated based on the 2017, 2018 data, varied between 0.11 for plant biomass and 0.75 for 1000 grain weight. This study shows that tef can successfully grow and produce under irrigated Mediterranean conditions. The wide diversity available in our germplasm collection can provide the foundations for breeding new tef cultivars that are better adapted to these conditions. © Koninklijke Brill NV, Leiden, 2018.
Fatiukha, A. ; Klymiuk, V. ; Peleg, Z. ; Saranga, Y. ; Cakmak, I. ; Krugman, T. ; Korol, A. B. ; Fahima, T. . Variation In Phosphorus And Sulfur Content Shapes The Genetic Architecture And Phenotypic Associations Within The Wheat Grain Ionome. Plant Journal 2019. Publisher's VersionAbstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants. © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd