2019
Fuller, K. ; Gaspar, D. ; Delgado, L. M. ; Shoseyov, O. ; Zeugolis, D. .
In Vitro And Preclinical Characterisation Of Compressed, Macro-Porous And Collagen Coated Poly-Ε-Caprolactone Electro-Spun Scaffolds.
Biomed Mater 2019.
AbstractLow in macro-porosity electro-spun scaffolds are often associated with foreign body response, whilst macro-porous electro-spun scaffolds have low mechanical integrity. Herein, compressed, macro-porous and collagen (bovine Achilles tendon and human recombinant) coated electro-spun poly-ε-caprolactone scaffolds were developed and their biomechanical, in vitro and in vivo properties were assessed. Collagen coating, independently of the source, did not significantly affect the biomechanical properties of the scaffolds. Although no significant difference in cell viability was observed between the groups, collagen coated scaffolds induced significantly higher DNA concentration. In vivo, no signs of adverse tissue effect were observed in any of the groups and all groups appeared to equally integrate into the subcutaneous tissue. It is evidenced that macro-porous poly-ε-caprolactone electro-spun meshes with adequate mechanical properties and acceptable host response can be developed for biomedical applications.
Shaar-Moshe, L. ; Hayouka, R. ; Roessner, U. ; Peleg, Z. .
Phenotypic And Metabolic Plasticity Shapes Life-History Strategies Under Combinations Of Abiotic Stresses.
Plant Direct 2019,
3, e00113.
AbstractPlants developed various reversible and non-reversible acclimation mechanisms to cope with the multifaceted nature of abiotic-stress combinations. We hypothesized that in order to endure these stress combinations, plants elicit distinctive acclimation strategies through specific trade-offs between reproduction and defense. To investigate acclimation strategies to combinations of salinity, drought and heat, we applied a system biology approach, integrating physiological, metabolic, and transcriptional analyses. We analyzed the trade-offs among functional and performance traits, and their effects on plant fitness. A combination of drought and heat resulted in escape strategy, while under a combination of salinity and heat, plants exhibited an avoidance strategy. On the other hand, under combinations of salinity and drought, with or without heat stress, plant fitness (i.e., germination rate of subsequent generation) was severely impaired. These results indicate that under combined stresses, plants' life-history strategies were shaped by the limits of phenotypic and metabolic plasticity and the trade-offs between traits, thereby giving raise to distinct acclimations. Our findings provide a mechanistic understanding of plant acclimations to combinations of abiotic stresses and shed light on the different life-history strategies that can contribute to grass fitness and possibly to their dispersion under changing environments.
Fahima, A. ; Levinkron, S. ; Maytal, Y. ; Hugger, A. ; Lax, I. ; Huang, X. ; Eyal, Y. ; Lichter, A. ; Goren, M. ; Stern, R. A. ; et al. Cytokinin Treatment Modifies Litchi Fruit Pericarp Anatomy Leading To Reduced Susceptibility To Post-Harvest Pericarp Browning.
Plant Sci 2019,
283, 41-50.
AbstractLitchi (Litchi chinensis Sonn.) is a subtropical fruit known for its attractive red pericarp color, semi-translucent white aril and unique flavor and aroma. Rapid post-harvest pericarp browning strictly limits litchi fruit marketing. In the current research, we hypothesized that modification of litchi fruit pericarp anatomy by hormone application may reduce fruit susceptibility to post-harvest pericarp browning. In this context, we hypothesized that cytokinin treatment, known to induce cell division, may yield fruit with thicker pericarp and reduced susceptibility for fruit surface micro-crack formation, water loss and post-harvest pericarp browning. Exogenous cytokinin treatment was applied at different stages along the course of litchi fruit development and the effect on fruit pericarp anatomy, fruit maturation and postharvest pericarp browning was investigated. Interestingly, cytokinin treatment, applied 4 weeks after full female bloom (WFB), during the phase of pericarp cell division, led to mature fruit with thicker pericarp, reduced rate of post-harvest water loss and reduced susceptibility to post-harvest pericarp browning, as compared to non-treated control fruit. Histological sections ascribe the difference in pericarp anatomy to increased cell proliferation in the parenchymatic tissue and the highly-lignified brachysclereid cell layer. In contrast, exogenous cytokinin treatment applied 7 WFB, following the phase of pericarp cell division, significantly increased epidermal-cell proliferation but had no significant effect on overall fruit pericarp thickness and only minor affect on post-harvest water loss or pericarp browning. Interestingly, the late cytokinin treatment also significantly postponed fruit maturation-associated anthocyanin accumulation and chlorophyll degradation, as previously reported, but had no effect on other parameters of fruit maturation, like total soluble sugars and total titratable acids typically modified during aril maturation. In conclusion, exogenous cytokinin treatment at different stages in fruit development differentially modifies litchi fruit pericarp anatomy by induction of cell-type specific cell proliferation. Early cytokinin treatment during the phase of pericarp cell division may prolong litchi fruit storage by reducing fruit susceptibility to post-harvest water loss and pericarp browning.
Golan, G. ; Ayalon, I. ; Perry, A. ; Zimran, G. ; Ade-Ajayi, T. ; Mosquna, A. ; Distelfeld, A. ; Peleg, Z. .
Gni-A1 Mediates Trade-Off Between Grain Number And Grain Weight In Tetraploid Wheat.
Theor Appl Genet 2019.
AbstractKEY MESSAGE: Wild emmer allele of GNI-A1 ease competition among developing grains through the suppression of floret fertility and increase grain weight in tetraploid wheat. Grain yield is a highly polygenic trait determined by the number of grains per unit area, as well as by grain weight. In wheat, grain number and grain weight are usually negatively correlated. Yet, the genetic basis underlying trade-off between the two is mostly unknown. Here, we fine-mapped a grain weight QTL using wild emmer introgressions in a durum wheat background and showed that grain weight is associated with the GNI-A1 gene, a regulator of floret fertility. In-depth characterization of grain number and grain weight indicated that suppression of distal florets by the wild emmer GNI-A1 allele increases weight of proximal grains in basal and central spikelets due to alteration in assimilate distribution. Re-sequencing of GNI-A1 in tetraploid wheat demonstrated the rich allelic repertoire of the wild emmer gene pool, including a rare allele which was present in two gene copies and contained a nonsynonymous mutation in the C-terminus of the protein. Using an F population generated from a cross between wild emmer accessions Zavitan, which carries the rare allele, and TTD140, we demonstrated that this unique polymorphism is associated with grain weight, independent of grain number. Moreover, we showed, for the first time, that GNI-A1 proteins are transcriptional activators and that selection targeted compromised activity of the protein. Our findings expand the knowledge of the genetic basis underlying trade-off between key yield components and may contribute to breeding efforts for enhanced grain yield.
Frankin, S. ; Kunta, S. ; Abbo, S. ; Sela, H. ; Goldberg, B. Z. ; Bonfil, D. J. ; Levy, A. ; Avivi-Ragolsky, N. ; Nashef, K. ; Roychowdhury, R. ; et al. The Israeli Palestinian Wheat Landraces Collection: Restoration And Characterization Of Lost Genetic Diversity.
J Sci Food Agric 2019.
AbstractBACKGROUND: For over a century, genetic diversity of wheat worldwide was eroded by continual selection for high yields and industrial demands. Wheat landraces cultivated in Israel and Palestine demonstrate high genetic diversity and a potentially wide repertoire of adaptive alleles. While most Israeli-Palestinian wheat landraces were lost in the transition to "Green Revolution" semi-dwarf varieties, some germplasm collections made at the beginning of the 20 century survived in genebanks and private collections worldwide. However, fragmentation and poor conservation place this unique genetic resource at a high risk of genetic erosion. Herein we describe a long-term initiative to restore, conserve and characterize a collection of Israeli and Palestinian wheat landraces (IPLR).
RESULTS: (i) a report on the IPLR construction (n=932).; (ii) an historical and agronomic context to this collection; (iii) characterize and assess IPLR's genetic diversity; and (iv) data comparison from two distinct sub-collections within IPLR: a collection made by N. Vavilov in 1926 (IPLR-VIR) and a later one (1979-1981) made by Y. Mattatia (IPLR-M). Though conducted in the same eco-geographic space, these two collections were subjected to considerably different conservation pathways. IPLR-M- which underwent only one propagation cycle- demonstrated marked genetic and phenotypic variability (within and between accessions) in comparison to IPLR-VIR which had been regularly regenerated over ~90 years.
CONCLUSION: We postulate that long-term ex-situ conservation involving human and GxE selection may significantly reduce accession heterogeneity and allelic diversity. Results are further discussed in a broader context of pre-breeding and conservation. This article is protected by copyright. All rights reserved.
Domec, J. - C. ; Berghoff, H. ; Way, D. ; Moshelion, M. ; Palmroth, S. ; Kets, K. ; Huang, C. - W. ; Oren, R. .
Mechanisms For Minimizing Height-Related Stomatal Conductance Declines In Tall Vines.
Plant Cell Environ 2019.
Israeli, A. ; Capua, Y. ; Shwartz, I. ; Tal, L. ; Meir, Z. ; Levy, M. ; Bar, M. ; Efroni, I. ; Ori, N. .
Multiple Auxin-Response Regulators Enable Stability And Variability In Leaf Development.
Curr Biol 2019.
AbstractAuxin-signal transduction is mediated by the antagonistic activity of transcriptional activators and repressors. Both activators and repressors belong to gene families, but the biological importance of this complexity is not clear. Here, we addressed this question using tomato leaf development as a model by generating and analyzing mutants in multiple auxin-response components. In developing compound tomato leaves, auxin promotes leaflet formation and blade growth, and in the intercalary regions between leaflets, auxin response is inhibited by the Aux/IAA protein ENTIRE (E). e mutants form simple leaves due to ectopic blade growth in the intercalary domain. Using this unique loss-of-function phenotype and genome editing of auxin-response factor (ARF) genes, encoding auxin-response activators, we identified the contribution of specific ARFs to the e phenotype. Mutations in the related ARFs SlMP, SlARF19A, and SlARF19B, but not SlARF7, reduced the leaf blade and suppressed the e phenotype in a dosage-dependent manner that correlated with their relative expression, leading to a continuum of shapes. While single e and slmp mutants affected blade growth in an opposite manner, leaves of e slmp double mutants were similar to those of the wild type. However, the leaf shape of e slmp was more variable than that of the wild type, and it showed increased sensitivity to auxin. Our findings demonstrate that the existence of multiple auxin-response repressors and activators stabilizes the developmental output of auxin and that tuning their activity enables shape variability. The increased complexity of the auxin response therefore balances stability and flexibility in leaf patterning.
Illouz-Eliaz, N. ; Ramon, U. ; Shohat, H. ; Blum, S. ; Livne, S. ; Mendelson, D. ; Weiss, D. .
Multiple Gibberellin Receptors Contribute To Phenotypic Stability Under Changing Environments.
Plant Cell 2019,
31, 1506–1519.
Publisher's VersionAbstractThe pleiotropic and complex gibberellin (GA) response relies on targeted proteolysis of DELLA proteins mediated by a GA-activated GIBBERELLIN-INSENSITIVE DWARF1 (GID1) receptor. The tomato (Solanum lycopersicum) genome encodes for a single DELLA protein, PROCERA (PRO), and three receptors, SlGID1a (GID1a), GID1b1 and GID1b2, that may guide specific GA responses. In this work, CRISPR-Cas9-derived gid1 mutants were generated and their effect on GA responses was studied. The gid1 triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that was saturated only at high doses. When the gid1 mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b receptor gene. These results suggest that multiple GA receptors contribute to phenotypic stability under environmental extremes.
Wiseglass, G. ; Pri-Tal, O. ; Mosquna, A. .
Aba Signaling Components In Phelipanche Aegyptiaca.
Sci Rep 2019,
9, 6476.
AbstractObligate root holoparasite Phelipanche aegyptiaca is an agricultural pest, which infests its hosts and feeds on the sap, subsequently damaging crop yield and quality. Its notoriously viable seed bank may serve as an ideal pest control target. The phytohormone abscisic acid (ABA) was shown to regulate P. aegyptiaca seed dormancy following strigolactones germination stimulus. Transcription analysis of signaling components revealed five ABA receptors and two co-receptors (PP2C). Transcription of lower ABA-affinity subfamily III receptors was absent in all tested stages of P. aegyptiaca development and parasitism stages. P. aegyptiaca ABA receptors interacted with the PP2Cs, and inhibited their activity in an ABA-dependent manner. Moreover, sequence analysis revealed multiple alleles in two P. aegyptiaca ABA receptors, with many non-synonymous mutations. Functional analysis of selected receptor alleles identified a variant with substantially decreased inhibitory effect of PP2Cs activity in-vitro. These results provide evidence that P. aegyptiaca is capable of biochemically perceiving ABA. In light of the possible involvement of ABA in parasitic activities, the discovery of active ABA receptors and PP2Cs could provide a new biochemical target for the agricultural management of P. aegyptiaca. Furthermore, the potential genetic loss of subfamily III receptors in this species, could position P. aegyptiaca as a valuable model in the ABA perception research field.
Adam, Z. ; Aviv-Sharon, E. ; Keren-Paz, A. ; Naveh, L. ; Rozenberg, M. ; Savidor, A. ; Chen, J. .
The Chloroplast Envelope Protease Ftsh11 - Interaction With Cpn60 And Identification Of Potential Substrates.
Front Plant Sci 2019,
10, 428.
AbstractFTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Curzon, A. Y. ; Chandrasekhar, K. ; Nashef, Y. K. ; Abbo, S. ; Bonfil, D. J. ; Reifen, R. ; Bar-El, S. ; Avneri, A. ; Ben-David, R. .
Distinguishing Between Bread Wheat And Spelt Grains Using Molecular Markers And Spectroscopy.
J Agric Food Chem 2019,
67, 3837-3841.
AbstractThe increasing demand for spelt products requires the baking industry to develop accurate and efficient tools to differentiate between spelt and bread wheat grains. We subjected a 272-sample spelt-bread wheat set to several potential diagnostic methods. DNA markers for γ-gliadin-D ( GAG56D), γ-gliadin-B ( GAG56B), and the Q-gene were used, alongside phenotypic assessment of ease-of-threshing and near-infrared spectroscopy (NIRS). The GAG56B and GAG56D markers demonstrated low diagnostic power in comparison to the Q-gene genotyping, which showed full accordance with the threshing phenotype, providing a highly accurate distinction between bread wheat and spelt kernels. A highly reliable Q classification was based on a three-waveband NIR model [Kappa (0.97), R-square (0.93)], which suggested that this gene influences grain characteristics. Our data ruled out a protein concentration bias of the NIRS-based diagnosis. These findings highlight the Q gene and NIRS as important, valuable, but simple tools for distinguishing between bread wheat and spelt.
Cui, Y. ; Wang, Z. ; Chen, S. ; Vainstein, A. ; Ma, H. .
Proteome And Transcriptome Analyses Reveal Key Molecular Differences Between Quality Parameters Of Commercial-Ripe And Tree-Ripe Fig (Ficus Carica L.).
BMC Plant Biol 2019,
19, 146.
AbstractBACKGROUND: Fig fruit are highly perishable at the tree-ripe (TR) stage. Commercial-ripe (CR) fruit, which are harvested before the TR stage for their postharvest transportability and shelf-life advantage, are inferior to TR fruit in size, color and sugar content. The succulent urn-shaped receptacle, serving as the protective structure and edible part of the fruit, determines fruit quality. Quantitative iTRAQ and RNA-Seq were performed to reveal the differential proteomic and transcriptomic traits of the receptacle at the two harvest stages.
RESULTS: We identified 1226 proteins, of which 84 differentially abundant proteins (DAPs) were recruited by criteria of abundance fold-change (FC) ≥1.3 and p < 0.05 in the TR/CR receptacle proteomic analysis. In addition, 2087 differentially expressed genes (DEGs) were screened by ≥2-fold expression change: 1274 were upregulated and 813 were downregulated in the TR vs. CR transcriptomic analysis. Ficin was the most abundant soluble protein in the fig receptacle. Sucrose synthase, sucrose-phosphate synthase and hexokinase were all actively upregulated at both the protein and transcriptional levels. Endoglucanase, expansin, beta-galactosidase, pectin esterase and aquaporins were upregulated from the CR to TR stage at the protein level. In hormonal synthesis and signaling pathways, high protein and transcriptional levels of aminocyclopropane-1-carboxylate oxidase were identified, together with a few diversely expressed ethylene-response factors, indicating the potential leading role of ethylene in the ripening process of fig receptacle, which has been recently reported as a non-climacteric tissue.
CONCLUSIONS: We present the first delineation of intra- and inter-omic changes in the expression of specific proteins and genes of TR vs. CR fig receptacle, providing valuable candidates for further study of fruit-quality formation control and fig cultivar innovation to accommodate market demand.
Bar, L. ; Czosnek, H. ; Sobol, I. ; Ghanim, M. ; Hariton Shalev, A. .
Downregulation Of Dystrophin Expression In Pupae Of The Whitefly Bemisia Tabaci Inhibits The Emergence Of Adults.
Insect Mol Biol 2019,
28, 662-675.
AbstractThe whitefly Bemisia tabaci is a major pest to agriculture. Adults are able to fly for long distances and to colonize staple crops, herbs and ornamentals, and to vector viruses belonging to several important taxonomic groups. During their early development, whiteflies mature from eggs through several nymphal stages (instars I to IV) until adults emerge from pupae. We aim at reducing whitefly populations by inhibiting the emergence of adults from nymphs. Here we targeted dystrophin, a conserved protein essential for the development of the muscle system in humans, other animals and insects. We have exploited the fact that whitefly nymphs developing on tomato leaves feed from the plant phloem via their stylets. Thus, we delivered dystrophin-silencing double-stranded RNA to nymphs developing on leaves of tomato plantlets with their roots bathing in the silencing solution. Downregulation of dystrophin expression occurred mainly in pupae. Dystrophin silencing induced also the downregulation of the dystrophin-associated protein genes actin and tropomyosin, and disrupted F-actin. Most significantly, the treatment inhibited the emergence of adults from pupae, suggesting that targeting dystrophin may help to restrain whitefly populations. This study demonstrates for the first time the important role of dystrophin in the development of a major insect pest to agriculture.
Negin, B. ; Yaaran, A. ; Kelly, G. ; Zait, Y. ; Moshelion, M. .
Mesophyll Aba Restrains Early Growth And Flowering But Does Not Directly Suppress Photosynthesis.
Plant Physiol 2019.
Abscisic acid (ABA) levels increase significantly in plants under stress conditions and ABA is thought to serve as a key stress-response regulator. However, the direct effect of ABA on photosynthesis and the effect of mesophyll ABA on yield under both well-watered and drought conditions are still the subject of debate. Here, we examined this issue using transgenic Arabidopsis thaliana plants carrying a dominant ABA-signaling inhibitor under the control of a mesophyll-specific promoter (FBPase::abi1-1, abbreviated to fa). Under normal conditions, fa plants displayed slightly higher stomatal conductance and carbon assimilation than wild-type (WT) plants; however, these parameters were comparable following ABA treatment. These observations suggest that ABA does not directly inhibit photosynthesis in the short term. fa plants also exhibited a variety of altered phenotypes under optimal conditions, including more vigorous initial growth, earlier flowering, smaller flowers and delayed chlorophyll degradation. Furthermore, under optimal conditions, fa plant seed production was less than a third of that observed for the WT. However, under drought conditions, WT and fa seed yields were similar due to a significant reduction in WT seed and no reduction in fa seed. These findings suggest that endogenous basal ABA inhibits a stress-escape response under non-stress conditions, allowing plants to accumulate biomass and maximize yield. The lack of a correlation between flowering time and plant biomass combined with delayed chlorophyll degradation suggests that this stress-escape behavior is regulated independently and upstream of other ABA-induced effects such as rapid growth and flowering.
Yaaran, A. ; Negin, B. ; Moshelion, M. .
Role Of Guard-Cell Aba In Determining Steady-State Stomatal Aperture And Prompt Vapor-Pressure-Deficit Response.
Plant Sci 2019,
281, 31-40.
Abscisic acid (ABA) is known to be involved in stomatal closure. However, its role in stomatal response to rapid increases in the vapor pressure deficit (VPD) is unclear. To study this issue, we generated guard cell-specific ABA-insensitive Arabidopsis plants (guard-cell specific abi1-1; GCabi). Under non-stressed conditions, the stomatal conductance (g) and apertures of GCabi plants were greater than those of control plants. This supports guard-cell ABA role as limiting steady-state stomatal aperture under non-stressful conditions. When there was a rapid increase in VPD (0.15 to 1 kPa), the g and stomatal apertures of GCabi decreased in a manner similar that observed in the WT control, but different from that observed in WT plants treated with fusicoccin. Low VPD increased the size of the stomatal apertures of the WT, but not of GCabi. We conclude that guard-cell ABA does not play a significant role in the initial, rapid stomatal closure that occurs in response to an increase in VPD, but is important for stomatal adaptation to ambient VPD. We propose a biphasic angiosperm VPD-sensing model that includes an initial ABA-independent phase and a subsequent ABA-dependent steady-state phase in which stomatal behavior is optimized for ambient VPD conditions.
Ben Shalom, T. ; Nevo, Y. ; Leibler, D. ; Shtein, Z. ; Azerraf, C. ; Lapidot, S. ; Shoseyov, O. .
Cellulose Nanocrystals (Cncs) Induced Crystallization Of Polyvinyl Alcohol (Pva) Super Performing Nanocomposite Films. Macromol Biosci 2019, e1800347.
This study is aimed to explore the properties of cellulose nanocrystals (CNC)/polyvinyl alcohol (PVA) composite films with and without 1,2,3,4-butane tetracarboxylic acid (BTCA), a nontoxic crosslinker. CNC and CNC-PVA nanocomposite films are prepared using solution-casting technique. Differential scanning calorimetry (DSC) analyses show that crosslinking increased the glass transition temperature but reduced the melting temperature and crystallinity. Furthermore, high CNC concentrations in the PVA matrix interfere with PVA crystallinity, whereas in specific ratio between CNC and PVA, two different crystalline structures are observed within the PVA matrix. Film surfaces and fracture topographies characterized using scanning electron microscope indicate that at certain CNC-PVA ratios, micron-sized needle-like crystals have formed. These crystalline structures correlate with the remarkable improvement in mechanical properties of the CNC-PVA nanocomposite films, that is, enhanced tensile strain and toughness to 570% and 202 MJ m , respectively, as compared to pristine PVA. BTCA enhances the tensile strain, ultimate tensile stress, toughness, and modulus of CNC films compared to pristine CNC films. Water absorption of crosslinked CNC and CNC-PVA nanocomposite films is significantly reduced, while film transparency is significantly improved as a function of PVA and crosslinker content. The presented results indicate that CNC-PVA nanocomposite films may find applications in packaging, and though materials applications.
Goldschmidt, E. E. ; Yosef, M. B. .
האתרוג; Mosad Harav Kook: Jerusalem, 2019.
Publisher's Versionתקצירהאתרוג – מסורת, מחקר ומעשה. מאמרים מדעיים, הלכתיים והיסטוריים במכלול נושאי האתרוג. בתוספת מונחון, קובץ שו”ת ואלבום זנים בהדפסה צבעונית. העורכים אליעזר גולדשמידט ומשה בר-יוסף.