2017
Spiegelman, Z. ; Omer, S. ; Mansfeld, B. N. ; Wolf, S. .
Function Of Cyclophilin1 As A Long-Distance Signal Molecule In The Phloem Of Tomato Plants. J Exp Bot 2017,
68, 953-964.
AbstractTomato (Solanum lycopersicum) diageotropica (dgt) mutants, containing a single mutation in the Cyclophilin1 (SlCyp1) gene, are auxin-insensitive, exhibiting a pleiotropic phenotype including lack of geotropism, abnormal xylem structure, lack of lateral roots (LRs), and elevated shoot-to-root ratio. SlCyp1 is a putative peptidyl-prolyl isomerase that can traffic from shoot to root, where it induces changes in auxin response, LR formation, and xylem development, suggesting it has a role as a long-distance signaling molecule. Here, we explored the mechanism underlying SlCyp1 function in the phloem. Expression of SlCyp1 under a phloem-specific (AtSuc2) promoter in dgt plants partially restored the wild-type phenotype, including lateral root development, root branching, and xylem morphology. The observed developmental changes were associated with physiological alternations at the whole-plant level, including a reduction in shoot-to-root ratio, enhanced transpiration, and elevated photosynthetic rates. Conversely, phloem-specific expression of SlCyp1 active-site mutants did not restore the wild-type phenotype. Local inhibition of cyclophilin functioning in the target tissue reduced auxin sensitivity, suggesting that its enzymatic activity in the distant organ is required for its action as a long-distance signalling agent. The data presented suggest that SlCyp1 is a signal molecule trafficking from shoot to root where its activity is required for auxin-mediated lateral root development.
Halperin, O. ; Gebremedhin, A. ; Wallach, R. ; Moshelion, M. .
High-Throughput Physiological Phenotyping And Screening System For The Characterization Of Plant-Environment Interactions. Plant J 2017,
89, 839-850.
AbstractWe present a simple and effective high-throughput experimental platform for simultaneous and continuous monitoring of water relations in the soil-plant-atmosphere continuum of numerous plants under dynamic environmental conditions. This system provides a simultaneously measured, detailed physiological response profile for each plant in the array, over time periods ranging from a few minutes to the entire growing season, under normal, stress and recovery conditions and at any phenological stage. Three probes for each pot in the array and a specially designed algorithm enable detailed water-relations characterization of whole-plant transpiration, biomass gain, stomatal conductance and root flux. They also enable quantitative calculation of the whole plant water-use efficiency and relative water content at high resolution under dynamic soil and atmospheric conditions. The system has no moving parts and can fit into many growing environments. A screening of 65 introgression lines of a wild tomato species (Solanum pennellii) crossed with cultivated tomato (S. lycopersicum), using our system and conventional gas-exchange tools, confirmed the accuracy of the system as well as its diagnostic capabilities. The use of this high-throughput diagnostic screening method is discussed in light of the gaps in our understanding of the genetic regulation of whole-plant performance, particularly under abiotic stress.
Shtein, I. ; Shelef, Y. ; Marom, Z. ; Zelinger, E. ; Schwartz, A. ; Popper, Z. A. ; Bar-On, B. ; Harpaz-Saad, S. .
Stomatal Cell Wall Composition: Distinctive Structural Patterns Associated With Different Phylogenetic Groups. Ann Bot 2017,
119, 1021-1033.
AbstractBackground and Aims: Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function.
Methods: A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ).
Key Results: Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening.
Conclusions: The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution.
Shtein, Z. ; Shoseyov, O. .
When Bottom-Up Meets Top-Down. Proc Natl Acad Sci U S A 2017,
114, 428-429.
Missaoui, A. M. ; Malinowski, D. P. ; Pinchak, W. E. ; Kigel, J. .
Insights Into The Drought And Heat Avoidance Mechanism In Summer-Dormant Mediterranean Tall Fescue. Front Plant Sci 2017,
8, 1971.
AbstractSummer dormancy is an evolutionary response that some perennial cool-season grasses adopted as an avoidance strategy to escape summer drought and heat. It is correlated with superior survival after severe summer droughts in many perennial grass species originating from Mediterranean environments. Understanding the genetic mechanism and environmental determinants of summer dormancy is important for interpreting the evolutionary history of seasonal dormancy and for the development of genomic tools to improve the efficiency of genetic selection for this important trait. The objectives of this research are to assess morphological and biochemical attributes that seem to be specific for the characterization of summer dormancy in tall fescue, and to validate the hypothesis that genes underlying stem determinacy might be involved in the mechanism of summer dormancy. Our results suggest that vernalization is an important requirement in the onset of summer dormancy in tall fescue. Non-vernalized tall fescue plants do not exhibit summer dormancy as vernalized plants do and behave more like summer-active types. This is manifested by continuation of shoot growth and high root activity in water uptake during summer months. Therefore, summer dormancy in tall fescue should be tested only in plants that underwent vernalization and are not subjected to water deficit during summer months. Total phenolic concentration in tiller bases (antioxidants) does not seem to be related to vernalization. It is most likely an environmental response to protect meristems from oxidative stress. Sequence analysis of the homolog gene from tall fescue genotypes belonging to summer-dormant and summer-active tall fescue types showed a unique deletion of three nucleotides specific to the dormant genotypes. Higher tiller bud numbers in dormant plants that were not allowed to flower and complete the reproductive cycle, confirmed that stem determinacy is a major component in the mechanism of summer dormancy. The number of variables identified in these studies as potential players in summer dormancy in tall fescue including vernalization, , water status, and protection from oxidative stress are a further confirmation that summer dormancy is a quantitative trait controlled by several genes with varying effects and prone to genotype by environment interactions.
Wang, Z. ; Cui, Y. ; Vainstein, A. ; Chen, S. ; Ma, H. .
Regulation Of Fig ( L.) Fruit Color: Metabolomic And Transcriptomic Analyses Of The Flavonoid Biosynthetic Pathway. Front Plant Sci 2017,
8, 1990.
AbstractCombined metabolomic and transcriptomic analyses were carried out with fig cultivar Green Peel and its color mutant "Purple Peel." Five and twenty-two metabolites were identified as having significantly different contents between fruit peels of the two cultivars at young and mature stages, respectively. Cyanidin O-malonylhexoside demonstrated a 3,992-fold increase in the mature purple peel, the first identification of a major cyanidin in fig fruit; cyanidin 3-O-glucoside, cyanidin O-malonylhexoside O-hexoside and cyanidin-3,5-O-diglucoside were upregulated 100-fold, revealing the anthocyanins underlying the purple mutation. Beyond the visible differences, there was very significant accumulation of the colorless flavonoids procyanidin B1, luteolin-3',7-di-O-glucoside, epicatechin and quercetin-3-O-rhamnoside in the mature "Purple Peel" compared to "Green Peel." At the young stage, only cyanidin O-malonylhexoside, cyanidin O-malonylhexoside O-hexoside and esculetin were upregulated a few fold in the mutant. Transcriptome analysis revealed a downregulated expression trend of genes encoding phenylpropanoid and flavonoid biosynthetic pathway enzyme in the young "Purple Peel" compared to the young "Green Peel," whereas significant and simultaneous upregulation was revealed in almost all of the flavonoid and anthocyanin pathway components and relevant transcription factors in the mature-stage mutant. The role of R2R3-MYB transcription factors in the color morph mutation and its possible relation to the activity of retrotransposons are discussed. Moreover, large-scale upregulation of small heat-shock protein genes was found in the mature mutant. This is the first work to reveal comprehensive metabolome and transcriptome network changes underlying a fig mutation in a single horticultural attribute, and its profound effects on fruit nutrition and quality.
Wigoda, N. ; Pasmanik-Chor, M. ; Yang, T. ; Yu, L. ; Moshelion, M. ; Moran, N. .
Differential Gene Expression And Transport Functionality In The Bundle Sheath Versus Mesophyll - A Potential Role In Leaf Mineral Homeostasis. J Exp Bot 2017,
68, 3179-3190.
AbstractUnder fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions.
Friedlander, T. ; Prizak, R. ; Barton, N. H. ; Tkačik, G. .
Evolution Of New Regulatory Functions On Biophysically Realistic Fitness Landscapes. Nat Commun 2017,
8, 216.
AbstractGene expression is controlled by networks of regulatory proteins that interact specifically with external signals and DNA regulatory sequences. These interactions force the network components to co-evolve so as to continually maintain function. Yet, existing models of evolution mostly focus on isolated genetic elements. In contrast, we study the essential process by which regulatory networks grow: the duplication and subsequent specialization of network components. We synthesize a biophysical model of molecular interactions with the evolutionary framework to find the conditions and pathways by which new regulatory functions emerge. We show that specialization of new network components is usually slow, but can be drastically accelerated in the presence of regulatory crosstalk and mutations that promote promiscuous interactions between network components.Gene networks evolve by transcription factor (TF) duplication and divergence of their binding site specificities, but little is known about the global constraints at play. Here, the authors study the coevolution of TFs and binding sites using a biophysical-evolutionary approach, and show that the emerging complex fitness landscapes strongly influence regulatory evolution with a role for crosstalk.
Gorovits, R. ; Moshe, A. ; Amrani, L. ; Kleinberger, R. ; Anfoka, G. ; Czosnek, H. .
The Six Tomato Yellow Leaf Curl Virus Genes Expressed Individually In Tomato Induce Different Levels Of Plant Stress Response Attenuation. Cell Stress Chaperones 2017,
22, 345-355.
AbstractTomato yellow leaf curl virus (TYLCV) is a begomovirus infecting tomato plants worldwide. TYLCV needs a healthy host environment to ensure a successful infection cycle for long periods. Hence, TYLCV restrains its destructive effect and induces neither a hypersensitive response nor cell death in infected tomatoes. On the contrary, TYLCV counteracts cell death induced by other factors, such as inactivation of HSP90 functionality. Suppression of plant death is associated with the inhibition of the ubiquitin 26S proteasome degradation and with a deactivation of the heat shock transcription factor HSFA2 pathways (including decreased HSP17 levels). The goal of the current study was to find if the individual TYLCV genes were capable of suppressing HSP90-dependent death and HSFA2 deactivation. The expression of C2 (C3 and CP to a lesser extent) caused a decrease in the severity of death phenotypes, while the expression of V2 (C1 and C4 to a lesser extent) strengthened cell death. However, C2 or V2 markedly affected stress response under conditions of viral infection. The downregulation of HSFA2 signaling, initiated by the expression of C1 and V2, was detected in the absence of virus infection, but was enhanced in infected plants, while CP and C4 mitigated HSFA2 levels only in the infected tomatoes. The dependence of analyzed plant stress response suppression on the interaction of the expressed genes with the environment created by the whole virus infection was more pronounced than on the expression of individual TYLCV genes.
Dalal, A. ; Attia, Z. ; Moshelion, M. .
To Produce Or To Survive: How Plastic Is Your Crop Stress Physiology?.
Front Plant Sci 2017,
8, 2067.
AbstractAbiotic stress causes major crop losses and is considered a greater challenge than biotic stress. Comparisons of the number of published articles and patents regarding these different types of stresses, and the number of commercially released crops designed to tolerate different types of stresses, revealed a huge gap in the bench-to-field transfer rate of abiotic stress-tolerant crops, as compared to crops designed to tolerate biotic stress. These differences underscore the complexity of abiotic stress-response mechanisms. Here, we suggest that breeding programs favoring yield-related quantitative physiological traits (QPTs; e.g., photosynthesis rate or stomatal conductance) have canalized those QPTs at their highest levels. This has affected the sensitivity of those QPTs to changing environmental conditions and those traits have become less plastic. We also suggest that breeding pressure has had an asymmetric impact on different QPTs, depending on their sensitivity to environmental conditions and their interactions with other QPTs. We demonstrate this asymmetric impact on the regulation of whole-plant water balance, showing how plastic membrane water content, stomatal conductance and leaf hydraulic conductance interact to canalize whole-organ water content. We suggest that a QPT's plasticity is itself an important trait and that understanding this plasticity may help us to develop yield-optimized crops.
Nir, I. ; Shohat, H. ; Panizel, I. ; Olszewski, N. ; Aharoni, A. ; Weiss, D. .
The Tomato Della Protein Procera Acts In Guard Cells To Promote Stomatal Closure. Plant Cell 2017,
29, 3186-3197.
AbstractPlants employ stomatal closure and reduced growth to avoid water deficiency damage. Reduced levels of the growth-promoting hormone gibberellin (GA) lead to increased tolerance to water deficit, but the underlying mechanism is unknown. Here, we show that the tomato () DELLA protein PROCERA (PRO), a negative regulator of GA signaling, acts in guard cells to promote stomatal closure and reduce water loss in response to water deficiency by increasing abscisic acid (ABA) sensitivity. The loss-of-function mutant exhibited increased stomatal conductance and rapid wilting under water deficit stress. Transgenic tomato overexpressing constitutively active stable DELLA proteins (S-) displayed the opposite phenotype. The effects of S- on stomatal aperture and water loss were strongly suppressed in the ABA-deficient mutant , indicating that these effects of S- are ABA dependent. While DELLA had no effect on ABA levels, guard cell ABA responsiveness was increased in S- and reduced in plants compared with the wild type. Expressing S- under the control of a guard-cell-specific promoter was sufficient to increase stomatal sensitivity to ABA and to reduce water loss under water deficit stress but had no effect on leaf size. This result indicates that DELLA promotes stomatal closure independently of its effect on growth.
Czosnek, H. ; Hariton-Shalev, A. ; Sobol, I. ; Gorovits, R. ; Ghanim, M. .
The Incredible Journey Of Begomoviruses In Their Whitefly Vector. Viruses 2017,
9.
Begomoviruses are vectored in a circulative persistent manner by the whitefly The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction.