check
Publications | Plant Sciences and Genetics in Agriculture

Publications By Year

  • «
  • 2 of 2
  •  

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Publications

2016
Golani, M. ; Frenkel, O. ; Bornstein, M. ; Shulhani, R. ; Abbo, S. ; Shtienberg, D. . Prevalence, Development, And Significance Of Ascochyta Blight Caused By Peyronellaea Pinodes In Pisum Elatius Populations Growing In Natural Ecosystems. Phytopathology™Phytopathology™ 2016, 106, 833 - 841. Publisher's VersionAbstract
Wild Pisum populations prevail in Israel in regions with diverse climatic conditions. A comprehensive survey was conducted in the winters of 2007?08 and 2008?09 at two sites in northern Israel, aiming to (i) document the density of Pisum elatius plants in natural ecosystems and elucidate factors related to their initial infection by Ascochyta blight and (ii) determine the factors governing disease development over time on individual plants. The surveyors identified P. elatius plants growing in designated quadrats, inspected each plant visually, and recorded the incidence and severity of its Ascochyta blight symptoms. Ascochyta blight, caused by Peyronellaea pinodes, was ubiquitous in Pisum elatius populations at both survey sites in both seasons. However, the total leaf area exhibiting disease symptoms of individual plants was very low, and stem and pod infections were rarely observed. Based on analyses of the survey data, it was suggested that, in natural ecosystems, the teleomorph stage of Peyronellaea pinodes serves as the main source of the primary and the secondary inoculum of the disease. In addition, it was found that infected leaves dropped off soon after infection, thereby precluding development of stem lesions. The plants continued growing and did not die; thus, they overcame the disease and could be considered ?cured?. This phenomenon was examined and confirmed in artificially inoculated, potted-plant experiments. It would be worthwhile to exploit the potential of this unique resistance mechanism as a tool for Ascochyta blight management in pea breeding.Wild Pisum populations prevail in Israel in regions with diverse climatic conditions. A comprehensive survey was conducted in the winters of 2007?08 and 2008?09 at two sites in northern Israel, aiming to (i) document the density of Pisum elatius plants in natural ecosystems and elucidate factors related to their initial infection by Ascochyta blight and (ii) determine the factors governing disease development over time on individual plants. The surveyors identified P. elatius plants growing in designated quadrats, inspected each plant visually, and recorded the incidence and severity of its Ascochyta blight symptoms. Ascochyta blight, caused by Peyronellaea pinodes, was ubiquitous in Pisum elatius populations at both survey sites in both seasons. However, the total leaf area exhibiting disease symptoms of individual plants was very low, and stem and pod infections were rarely observed. Based on analyses of the survey data, it was suggested that, in natural ecosystems, the teleomorph stage of Peyronellaea pinodes serves as the main source of the primary and the secondary inoculum of the disease. In addition, it was found that infected leaves dropped off soon after infection, thereby precluding development of stem lesions. The plants continued growing and did not die; thus, they overcame the disease and could be considered ?cured?. This phenomenon was examined and confirmed in artificially inoculated, potted-plant experiments. It would be worthwhile to exploit the potential of this unique resistance mechanism as a tool for Ascochyta blight management in pea breeding.
Golani, M. ; Abbo, S. ; Sherman, A. ; Frenkel, O. ; Shtienberg, D. . The Temperature Response And Aggressiveness Of Peyronellaea Pinodes Isolates Originating From Wild And Domesticated Pisum Sp. In Israel. Phytopathology™Phytopathology™ 2016, 106, 824 - 832. Publisher's VersionAbstract
Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.
Tal, Y. ; Anavi, S. ; Reisman, M. ; Samach, A. ; Tirosh, O. ; Troen, A. M. . The Neuroprotective Properties Of A Novel Variety Of Passion Fruit. Journal of Functional Foods 2016, 23, 359 - 369. Publisher's VersionAbstract
Passion fruit is a commercially important crop. The neuroprotective activity of fruit extracts from two hybrid lines of antioxidant ester thiol-rich Passiflora edulis Sims, the commercial “Passion Dream” and novel cultivar 428 (“Dena”) line were studied. Crude extracts from line 428 displayed the strongest dose-dependent neuroprotective activity, preventing glutamate induced cell-death, mitochondrial depolarization and glutathione depletion, when added to the medium of cultured HT4 neurons (p < 0.05). Supplementing diet of mice with the 428 fruit-extract improved survival of dopaminergic neurons by 60% in mice injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) compared to control-fed MPTP-injected mice (p < 0.05). The neuroprotection conferred by passion fruit extracts in vivo and in vitro shows promise for further research into their bioactive potential for medical exploitation.
Zingerman-Koladko, I. ; Khayat, M. ; Harapin, J. ; Shoseyov, O. ; Gruenbaum, Y. ; Salman, A. ; Medalia, O. ; Ben-Harush, K. . The Assembly Of C. Elegans Lamins Into Macroscopic Fibers. J Mech Behav Biomed Mater 2016, 63, 35-43.Abstract
Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.
Rosental, L. ; Perelman, A. ; Nevo, N. ; Toubiana, D. ; Samani, T. ; Batushansky, A. ; Sikron, N. ; Saranga, Y. ; Fait, A. . Environmental And Genetic Effects On Tomato Seed Metabolic Balance And Its Association With Germination Vigor. BMC Genomics 2016, 17, 1047.Abstract
BACKGROUND: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. RESULTS: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. CONCLUSIONS: An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.
Shwartz, I. ; Levy, M. ; Ori, N. ; Bar, M. . Hormones In Tomato Leaf Development. Dev Biol 2016, 419, 132-142.Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Abitbol, T. ; Rivkin, A. ; Cao, Y. ; Nevo, Y. ; Abraham, E. ; Ben-Shalom, T. ; Lapidot, S. ; Shoseyov, O. . Nanocellulose, A Tiny Fiber With Huge Applications. Curr Opin Biotechnol 2016, 39, 76-88.Abstract
Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering due to its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. We discuss the main areas of nanocellulose research: photonics, films and foams, surface modifications, nanocomposites, and medical devices. These tiny nanocellulose fibers have huge potential in many applications, from flexible optoelectronics to scaffolds for tissue regeneration. We hope to impart the readers with some of the excitement that currently surrounds nanocellulose research, which arises from the green nature of the particles, their fascinating physical and chemical properties, and the diversity of applications that can be impacted by this material.
Ofner, I. ; Lashbrooke, J. ; Pleban, T. ; Aharoni, A. ; Zamir, D. . Solanum Pennellii Backcross Inbred Lines (Bils) Link Small Genomic Bins With Tomato Traits. Plant J 2016, 87, 151-60.Abstract
We present a resource for fine mapping of traits derived from the wild tomato species Solanum pennellii (LA0716). The population of backcross inbred lines (BILs) is composed of 446 lines derived after a few generations of backcrosses of the wild species with cultivated tomato (cultivar M82; LA3475), followed by more than seven generations of self-pollination. The BILs were genotyped using the 10K SOL-CAP single nucleotide polymorphism (SNP) -Chip, and 3700 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs carry, on average, 2.7 introgressions per line, with a mean introgression length of 11.7 Mbp. Whereas the classic 76 introgression lines (ILs) partitioned the genome into 106 mapping bins, the BILs generated 633 bins, thereby enhancing the mapping resolution of traits derived from the wild species. We demonstrate the power of the BILs for rapid fine mapping of simple and complex traits derived from the wild tomato species.
Merchuk-Ovnat, L. ; Barak, V. ; Fahima, T. ; Ordon, F. ; Lidzbarsky, G. A. ; Krugman, T. ; Saranga, Y. . Ancestral Qtl Alleles From Wild Emmer Wheat Improve Drought Resistance And Productivity In Modern Wheat Cultivars. Front Plant Sci 2016, 7, 452.Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.
Haberman, A. ; Ackerman, M. ; Crane, O. ; Kelner, J. - J. ; Costes, E. ; Samach, A. . Different Flowering Response To Various Fruit Loads In Apple Cultivars Correlates With Degree Of Transcript Reaccumulation Of A Tfl1-Encoding Gene. Plant J 2016, 87, 161-73.Abstract
In many perennial fruit trees, flowering in the year following a year with heavy fruit load can be quite limited. This biennial cycle of fruiting, termed alternate bearing, was described 170 years ago in apple (Malus domestica). Apple inflorescences are mainly found on short branches (spurs). Bourse shoots (BS) develop from the leaf axils of the spur. BS apices may terminate ~100 days after flowering, with formation of next year's inflorescences. We sought to determine how developing fruit on the spur prevents the adjacent BS apex from forming an inflorescence. The presence of adjacent fruit correlated with reaccumulation of transcript encoding a potential flowering inhibitor, MdTFL1-2, in BS apices prior to inflorescence initiation. BS apices without adjacent fruit that did not flower due to late fruitlet removal, neighbouring fruit on the tree, or leaf removal, also reaccumulated the MdTFL1-2 transcript. Fruit load and gibberellin (GA) application had similar effects on the expression of MdTFL1-2 and genes involved in GA biosynthesis and metabolism. Some apple cultivars are less prone to alternate bearing. We show that the response of a BS apex to different numbers of adjacent fruit differs among cultivars in both MdTFL1-2 accumulation and return flowering. These results provide a working model for the further study of alternate bearing, and help clarify the need for cultivar-specific approaches to reach stable fruit production.
Nash, M. A. ; Shoseyov, O. . Editorial Overview: Nanobiotechnology At A Crossroads: Moving Beyond Proof Of Concept. Curr Opin Biotechnol 2016, 39, vii-ix.
Laiba, E. ; Glikaite, I. ; Levy, Y. ; Pasternak, Z. ; Fridman, E. . Genome Scan For Nonadditive Heterotic Trait Loci Reveals Mainly Underdominant Effects In Saccharomyces Cerevisiae. Genome 2016, 59, 231-42.Abstract
The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.
Steiner, E. ; Livne, S. ; Kobinson-Katz, T. ; Tal, L. ; Pri-Tal, O. ; Mosquna, A. ; Tarkowská, D. ; Mueller, B. ; Tarkowski, P. ; Weiss, D. . The Putative O-Linked N-Acetylglucosamine Transferase Spindly Inhibits Class I Tcp Proteolysis To Promote Sensitivity To Cytokinin. Plant Physiol 2016, 171, 1485-94.Abstract
Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) is a putative serine and threonine O-linked N-acetylglucosamine transferase (OGT). While SPY has been shown to suppress gibberellin signaling and to promote cytokinin (CK) responses, its catalytic OGT activity was never demonstrated and its effect on protein fate is not known. We previously showed that SPY interacts physically and functionally with TCP14 and TCP15 to promote CK responses. Here, we aimed to identify how SPY regulates TCP14/15 activities and how these TCPs promote CK responses. We show that SPY activity is required for TCP14 stability. Mutation in the putative OGT domain of SPY (spy-3) stimulated TCP14 proteolysis by the 26S proteasome, which was reversed by mutation in CULLIN1 (CUL1), suggesting a role for SKP, CUL1, F-box E3 ubiquitin ligase in TCP14 proteolysis. TCP14 proteolysis in spy-3 suppressed all TCP14 misexpression phenotypes, including the enhanced CK responses. The increased CK activity in TCP14/15-overexpressing flowers resulted from increased sensitivity to the hormone and not from higher CK levels. TCP15 overexpression enhanced the response of the CK-induced synthetic promoter pTCS to CK, suggesting that TCP14/15 affect early steps in CK signaling. We propose that posttranslational modification of TCP14/15 by SPY inhibits their proteolysis and that the accumulated proteins promote the activity of the CK phosphorelay cascade in developing Arabidopsis leaves and flowers.
Vulavala, V. K. R. ; Elbaum, R. ; Yermiyahu, U. ; Fogelman, E. ; Kumar, A. ; Ginzberg, I. . Silicon Fertilization Of Potato: Expression Of Putative Transporters And Tuber Skin Quality. Planta 2016, 243, 217-29.Abstract
MAIN CONCLUSION: A silicon transporter homolog was upregulated by Si fertilization and drought in potato roots and leaves. High Si in tuber skin resulted in anatomical and compositional changes suggesting delayed skin maturation. Silicon (Si) fertilization has beneficial effects on plant resistance to biotic and abiotic stresses. Potatoes, low Si accumulators, are susceptible to yield loss due to suboptimal growth conditions; thus Si fertilization may contribute to crop improvement. The effect of Si fertilization on transcript levels of putative transporters, Si uptake and tuber quality was studied in potatoes grown in a glasshouse and fertilized with sodium silicate, under normal and drought-stress conditions. Anatomical studies and Raman spectroscopic analyses of tuber skin were conducted. A putative transporter, StLsi1, with conserved amino acid domains for Si transport, was isolated. The StLsi1 transcript was detected in roots and leaves and its level increased twofold following Si fertilization, and about fivefold in leaves upon Si × drought interaction. Nevertheless, increased Si accumulation was detected only in tuber peel of Si-fertilized plants--probably due to passive movement of Si from the soil solution--where it modified skin cell morphology and cell-wall composition. Compared to controls, skin cell area was greater, suberin biosynthetic genes were upregulated and skin cell walls were enriched with oxidized aromatic moieties suggesting enhanced lignification and suberization. The accumulating data suggest delayed tuber skin maturation following Si fertilization. Despite StLsi1 upregulation, low accumulation of Si in roots and leaves may result from low transport activity. Study of Si metabolism in potato, a major staple food, would contribute to the improvement of other low Si crops to ensure food security under changing climate.
Ben-Gera, H. ; Dafna, A. ; Alvarez, J. P. ; Bar, M. ; Mauerer, M. ; Ori, N. . Auxin-Mediated Lamina Growth In Tomato Leaves Is Restricted By Two Parallel Mechanisms. Plant J 2016, 86, 443-57.Abstract
In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild-type leaf primordia, the miR160-targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160-targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160-targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.
Gorovits, R. ; Fridman, L. ; Kolot, M. ; Rotem, O. ; Ghanim, M. ; Shriki, O. ; Czosnek, H. . Tomato Yellow Leaf Curl Virus Confronts Host Degradation By Sheltering In Small/Midsized Protein Aggregates. Virus Res 2016, 213, 304-313.Abstract
Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted by the whitefly Bemisia tabaci to tomato and other crops. TYLCV proteins are endangered by the host defenses. We have analyzed the capacity of the tomato plant and of the whitefly insect vector to degrade the six proteins encoded by the TYLCV genome. Tomato and whitefly demonstrated the highest proteolytic activity in the fractions containing soluble proteins, less-in large protein aggregates; a significant decrease of TYLCV proteolysis was detected in the intermediate-sized aggregates. All the six TYLCV proteins were differently targeted by the cytoplasmic and nuclear degradation machineries (proteases, ubiquitin 26S proteasome, autophagy). TYLCV could confront host degradation by sheltering in small/midsized aggregates, where viral proteins are less exposed to proteolysis. Indeed, TYLCV proteins were localized in aggregates of various sizes in both host organisms. This is the first study comparing degradation machinery in plant and insect hosts targeting all TYLCV proteins.
Sanami, M. ; Sweeney, I. ; Shtein, Z. ; Meirovich, S. ; Sorushanova, A. ; Mullen, A. M. ; Miraftab, M. ; Shoseyov, O. ; O'Dowd, C. ; Pandit, A. ; et al. The Influence Of Poly(Ethylene Glycol) Ether Tetrasuccinimidyl Glutarate On The Structural, Physical, And Biological Properties Of Collagen Fibers. J Biomed Mater Res B Appl Biomater 2016, 104, 914-22.Abstract
Various chemical, natural, or synthetic in origin, crosslinking methods have been proposed over the years to stabilise collagen fibers. However, an optimal method has yet to be identified. Herein, we ventured to assess the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate, as opposed to glutaraldehyde (GTA), genipin and carbodiimide, on the structural, physical and biological properties of collagen fibers. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate induced an intermedium surface smoothness, denaturation temperature and swelling. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers had significantly higher stress at break values than the carbodiimide fibers, but significantly lower than the GTA and genipin fibers. With respect to strain at break, no significant difference was observed among the crosslinking treatments. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers exhibited significantly higher cell metabolic activity and DNA concentration that all other crosslinking treatments, promoted consistently cellular elongation along the longitudinal fiber axis and by day 7 they were completely covered by cells. Collectively, this work clearly demonstrates the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate as collagen crosslinker. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 914-922, 2016.
Moshe, A. ; Gorovits, R. ; Liu, Y. ; Czosnek, H. . Tomato Plant Cell Death Induced By Inhibition Of Hsp90 Is Alleviated By Tomato Yellow Leaf Curl Virus Infection. Mol Plant Pathol 2016, 17, 247-60.Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Abbo, S. ; א, גופר; ש, עבו. ביות הצמחים וראשית החקלאות במזרח הקרוב; רסלינג: תל אביב, 2016; p. 346. Publisher's Versionתקציר

לפני כ-10,500 שנים, לאחר מאות אלפי שנים שבהן חיו בני אדם בקהילות קטנות, שויוניות ונוודיות, התפרנסו ממשאבי הטבע כלקטים-ציידים ואכלו את מה שמכונה בימינו "דיאטת פליאו", התרחשה באזורנו מהפכה – "המהפכה החקלאית" או "המהפכה הניאוליתית". היה זה שידוד מערכות תרבותי-חברתי-כלכלי מכונן בהיסטוריה האנושית שהוביל ליצירת חברות יושבות קבע של יצרני מזון, צומחות וגדלות בהיקפן, צפופות, מורכבות ומרובדות, שהולידו את התרבות המערבית.

קבוצת הצמחים שבוייתה והייתה למרכיביה של "חבילת הגידולים" הניאוליתית במזרח הקרוב כוללת את השעורה, שני מיני חיטה, האפוּן, העדשה, החִמצה (חומוס), בקיית הכרשינה וכן פִשתָה. רוב המינים האלו מספקים עד היום חלק ניכר מהתוצרת החקלאית המזינה את האדם וחיות המשק שלו. בעלי החיים שבויתו באותה מהפכה הם העז, הכבש, הבקר והחזיר, ומאוחר יותר בויתו עצי פרי – זית, גפן, תאנה, רימון ותמר. אי לכך, יש להכיר בעובדה שהמהפכה החקלאית אימצה אל סביבת החיים והחברה האנושית כבר לפני למעלה מ-10,000 שנים את מרכיבי התזונה הבולטים ביותר עד היום בחלקי עולם גדולים. המעבר לאורח חיים חקלאי דרש שינויים מרחיקי לכת בתפיסת העולם של האדם, כמו גם במבנה ובארגון החברתי, ואלו הובילו את החברה והתרבות האנושית במהרה אל המצב המודרני המוכר לנו כיום.

הספר שלפניכם בוחן את שאלות היסוד הנוגעות לביות הצמחים במזרח הקרוב; הוא מציג היבטים שונים של ביות הצמחים ושל היחסים החדשים בין האדם לצמחים, ובינו לבין הטבע בכלל בעקבות הביות. המחברים מעלים את הטענה שביות הצמחים היה מהלך מהיר שהתרחש במרכז אחד, בדרום מזרח תורכיה ובצפון סוריה, ושהוא היה מהלך מתוכנן ומבוסס ידע שבמסגרתו בוייתה חבילת גידולים מאוזנת מהבחינה החקלאית ומהבחינה התזונתית.

אבי גופר הוא ארכיאולוג מאוניברסיטת תל אביב החוקר מזה שנים את התקופה הניאוליתית ואת נושא ראשית החקלאות באזורנו. שחל עבו הוא אגרונום מהפקולטה לחקלאות של האוניברסיטה העברית אשר עוסק מזה שנים בגידולי תבואות, בעיקר בחִמצה (חומוס).