Gold, K. M. ; Townsend, P. A. ; Larson, E. R. ; Herrmann, I. ; Gevens, A. J. .
Contact Reflectance Spectroscopy For Rapid, Accurate, And Nondestructive Phytophthora Infestans Clonal Lineage Discrimination.
Phytopathology 2019,
110, 851 - 862.
Publisher's VersionAbstractPopulations of Phytophthora infestans, the oomycete causal agent of potato late blight in the United States, are predominantly asexual, and isolates are characterized by clonal lineage or asexual descendants of a single genotype. Current tools for clonal lineage identification are time consuming and require laboratory equipment. We previously found that foliar spectroscopy can be used for high-accuracy pre- and postsymptomatic detection of P. infestans infections caused by clonal lineages US-08 and US-23. In this work, we found subtle but distinct differences in spectral responses of potato foliage infected by these clonal lineages in both growth-chamber time-course experiments (12- to 24-h intervals over 5 days) and naturally infected samples from commercial production fields. In both settings, we measured continuous visible to shortwave infrared reflectance (400 to 2,500 nm) on leaves using a portable spectrometer with contact probe. We consistently discriminated between infections caused by the two clonal lineages across all stages of disease progression using partial least squares (PLS) discriminant analysis, with total accuracies ranging from 88 to 98%. Three-class random forest differentiation between control, US-08, and US-23 yielded total discrimination accuracy ranging from 68 to 76%. Differences were greatest during presymptomatic infection stages and progressed toward uniformity as symptoms advanced. Using PLS-regression trait models, we found that total phenolics, sugar, and leaf mass per area were different between lineages. Shortwave infrared wavelengths (>1,100 nm) were important for clonal lineage differentiation. This work provides a foundation for future use of hyperspectral sensing as a nondestructive tool for pathovar differentiation.Populations of Phytophthora infestans, the oomycete causal agent of potato late blight in the United States, are predominantly asexual, and isolates are characterized by clonal lineage or asexual descendants of a single genotype. Current tools for clonal lineage identification are time consuming and require laboratory equipment. We previously found that foliar spectroscopy can be used for high-accuracy pre- and postsymptomatic detection of P. infestans infections caused by clonal lineages US-08 and US-23. In this work, we found subtle but distinct differences in spectral responses of potato foliage infected by these clonal lineages in both growth-chamber time-course experiments (12- to 24-h intervals over 5 days) and naturally infected samples from commercial production fields. In both settings, we measured continuous visible to shortwave infrared reflectance (400 to 2,500 nm) on leaves using a portable spectrometer with contact probe. We consistently discriminated between infections caused by the two clonal lineages across all stages of disease progression using partial least squares (PLS) discriminant analysis, with total accuracies ranging from 88 to 98%. Three-class random forest differentiation between control, US-08, and US-23 yielded total discrimination accuracy ranging from 68 to 76%. Differences were greatest during presymptomatic infection stages and progressed toward uniformity as symptoms advanced. Using PLS-regression trait models, we found that total phenolics, sugar, and leaf mass per area were different between lineages. Shortwave infrared wavelengths (>1,100 nm) were important for clonal lineage differentiation. This work provides a foundation for future use of hyperspectral sensing as a nondestructive tool for pathovar differentiation.
Arun, P. V. ; Herrmann, I. ; Budhiraju, K. M. ; Karnieli, A. .
Convolutional Network Architectures For Super-Resolution/Sub-Pixel Mapping Of Drone-Derived Images.
Pattern Recognition 2019,
88, 431-446.
Publisher's VersionAbstractSpatial resolution enhancement is a pre-requisite for integrating unmanned aerial vehicle (UAV) datasets with the data from other sources. However, the mobility of UAV platforms, along with radiometric and atmospheric distortions, makes the task difficult. In this paper, various convolutional neural network (CNN) architectures are explored for resolving the issues related to sub-pixel classification and super-resolution of drone-derived datasets. The main contributions of this work are: 1) network-inversion based architectures for super-resolution and sub-pixel mapping of drone-derived images taking into account their spectral-spatial characteristics and the distortions prevalent in them 2) a feature-guided transformation for regularizing the inversion problem 3) loss functions for improving the spectral fidelity and inter-label compatibility of coarser to finer-scale mapping 4) use of multi-size kernel units for avoiding over-fitting. The proposed approach is the first of its kind in using neural network inversion for super-resolution and sub-pixel mapping. Experiments indicate that the proposed super-resolution approach gives better results in comparison with the sparse-code based approaches which generally result in corrupted dictionaries and sparse codes for multispectral aerial images. Also, the proposed use of neural network inversion, for projecting spatial affinities to sub-pixel maps, facilitates the consideration of coarser-scale texture and color information in modeling the finer-scale spatial-correlation. The simultaneous consideration of spectral bands, as proposed in this study, gives better super-resolution results when compared to the individual band enhancements. The proposed use of different data-augmentation strategies, for emulating the distortions, improves the generalization capability of the framework. Sensitivity of the proposed super-resolution and sub-pixel mapping frameworks with regard to the network parameters is thoroughly analyzed. The experiments over various standard datasets as well as those collected from known locations indicate that the proposed frameworks perform better when compared to the prominent published approaches. © 2018 Elsevier Ltd
Herrmann, I. ; Vosberg, S. K. ; Townsend, P. A. ; Conley, S. P. .
Spectral Data Collection By Dual Field-Of-View System Under Changing Atmospheric Conditions—A Case Study Of Estimating Early Season Soybean Populations.
Sensors (Switzerland) 2019,
19.
Publisher's VersionAbstractThere is an increasing interest in using hyperspectral data for phenotyping and crop management while overcoming the challenge of changing atmospheric conditions. The Piccolo dual field-of-view system collects up- and downwelling radiation nearly simultaneously with one spectrometer. Such systems offer great promise for crop monitoring under highly variable atmospheric conditions. Here, the system’s utility from a tractor-mounted boom was demonstrated for a case study of estimating soybean plant populations in early vegetative stages. The Piccolo system is described and its performance under changing sky conditions are assessed for two replicates of the same experiment. Plant population assessment was estimated by partial least squares regression (PLSR) resulting in stable estimations by models calibrated and validated under sunny and cloudy or cloudy and sunny conditions, respectively. We conclude that the Piccolo system is effective for data collection under variable atmospheric conditions, and we show its feasibility of operation for precision agriculture research and potential commercial applications. © 2019, MDPI AG. All rights reserved.
Shelef, O. ; Summerfield, L. ; Lev-Yadun, S. ; Villamarin-Cortez, S. ; Sadeh, R. ; Herrmann, I. ; Rachmilevitch, S. .
Thermal Benefits From White Variegation Of Silybum Marianum Leaves.
Frontiers in Plant Science 2019,
10.
Publisher's VersionAbstractLeaves of the spiny winter annual Silybum marianum express white patches (variegation) that can cover significant surface areas, the outcome of air spaces formed between the epidermis and the green chlorenchyma. We asked: (1) what characterizes the white patches in S. marianum and what differs them from green patches? (2) Do white patches differ from green patches in photosynthetic efficiency under lower temperatures? We predicted that the air spaces in white patches have physiological benefits, elevating photosynthetic rates under low temperatures. To test our hypotheses we used both a variegated wild type and entirely green mutants. We grew the plants under moderate temperatures (20°C/10°C d/n) and compared them to plants grown under lower temperatures (15°C/5°C d/n). The developed plants were exposed to different temperatures for 1 h and their photosynthetic activity was measured. In addition, we compared in green vs. white patches, the reflectance spectra, patch structure, chlorophyll and dehydrin content, stomatal structure, plant growth, and leaf temperature. White patches were not significantly different from green patches in their biochemistry and photosynthesis. However, under lower temperatures, variegated wild-type leaves were significantly warmer than all-green mutants – possible explanations for that are discussed These findings support our hypothesis, that white variegation of S. marianum leaves has a physiological role, elevating leaf temperature during cold winter days. © 2019 Shelef, Summerfield, Lev-Yadun, Villamarin-Cortez, Sadeh, Herrmann and Rachmilevitch.