Cochavi, A. ; Rubin, B. ; Smirnov, E. ; Achdari, G. ; Eizenberg, H. .
Factors Affecting Egyptian Broomrape (Orobanche Aegyptiaca) Control In Carrot.
Weed Science 2016,
64, 321-330.
Publisher's VersionAbstractCarrot is a high-value cash crop that is grown in Israel throughout the year. Egyptian broomrape is a chlorophyll-lacking, obligate, root holoparasite that parasitizes members of many botanical families, including the Apiaceae. At high infestation levels, Egyptian broomrape can cause total yield loss in carrot. A protocol has been developed for the control of Egyptian broomrape in carrot. Because carrots are grown in Israel under fall, winter, and spring conditions, information about the relations between the efficacy of control and temperature is important. Therefore, the objective of this study was to investigate the response of carrot and Egyptian broomrape to herbicides at different phenological stages under varying temperature regimes. This study was conducted under temperature-controlled conditions in a multiclimate greenhouse and in a net house. Applications of the imidazolinone herbicides imazapic and imazamox (each applied at 4.8 g ai ha-1) injured carrot plants and reduced yield and yield quality. Glyphosate effectively controlled Egyptian broomrape and did not negatively affect the carrot plants when applied three times at ≤-108 g ae ha-1. High temperatures increased the carrot plants' sensitivity to glyphosate. This study found that three applications of glyphosate at 108 g ae ha-1 can prevent Egyptian broomrape damage without causing any damage to the carrot crop. Our results indicate that weather conditions can affect herbicide phytotoxicity in carrot. The highest temperature at the time of herbicide application corresponded to the strongest observed phytotoxic effect. To summarize, effective Egyptian broomrape control can be achieved by three sequential foliar applications of glyphosate (108 g ae ha-1), beginning during the early parasitism stage (i.e., small tubercles). Moreover, applying glyphosate on carrot at high temperature (i.e., 28/22 C day/night temperatures) can injure carrot plants and reduce control efficacy. Nomenclature: Glyphosate; imazamox; imazapic; Egyptian broomrape, Orobanche aegyptiaca Pers. ORAAE; carrot, Daucus carota L. var. sativus Hoffm. © 2016 Weed Science Society of America.
Goldwasser, Y. ; Miryamchik, H. ; Rubin, B. ; Eizenberg, H. .
Field Dodder (Cuscuta Campestris)–A New Model Describing Temperature-Dependent Seed Germination.
Weed Science 2016,
64, 53-60.
Publisher's VersionAbstractThe members of the genus Cuscuta (common name: dodder) are obligate holoparasitic plants that are found throughout the agricultural regions of the world. Of all of the species of dodder, field dodder (Cuscuta campestris) causes the most damage to crops. This species parasitizes the shoots of broadleaf plant crops and weeds. We conducted a series of field dodder seed germination tests in controlled-temperature chambers, in order to describe the effect of temperature on field dodder germination and develop a germination model based on the obtained data. The best fit was obtained when temperature data and time were transformed to thermal time using the beta-function model. The field dodder germination model can serve as a tool for knowledge-based predictions of germination and emergence timing, to allow for the implementation of effective mechanical and chemical management measures. Nomenclature: Field dodder; Cuscuta campestris Yuncker. © 2016 Weed Science Society of America.
Kleinman, Z. ; Ben-Ami, G. ; Rubin, B. .
From Sensitivity To Resistance - Factors Affecting The Response Of Conyza Spp. To Glyphosate.
Pest management science 2016,
72, 1681-1688.
Publisher's VersionAbstractBACKGROUND: Conyza bonariensis and C. canadensis are troublesome weeds, particularly in fields with minimum tillage, on roadsides and in perennial crops. The distribution of these difficult-to-control species is further increased by the spread of glyphosate-resistant populations. A preliminary investigation has demonstrated the existence of various degrees of glyphosate tolerance/resistance in these populations, underscoring the need to examine the relationship between glyphosate efficacy and plant growth conditions. RESULTS: In populations exposed to glyphosate at different temperatures, glyphosate tolerance increased linearly as the temperature was increased, whereas when grown under the same temperatures, they largely responded similarly to the herbicide. Furthermore, the sensitivity of plants to glyphosate decreased significantly with plant age and increased following temporal exposure to shading. Dose-response studies confirmed the glyphosate resistance of four C. bonariensis populations that were 8-30 times more resistant to glyphosate than the most glyphosate-sensitive population. These populations retained their characteristic glyphosate resistance even under unfavourable growth conditions. CONCLUSION: These findings indicate that the effect of glyphosate on both Conyza species is strongly linked to growing conditions. This has great importance for our understanding of glyphosate resistance and for control of these weeds in agricultural systems. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cochavi, A. ; Rubin, B. ; Achdari, G. ; Eizenberg, H. .
Thermal Time Model For Egyptian Broomrape (Phelipanche Aegyptiaca) Parasitism Dynamics In Carrot (Daucus Carota L.): Field Validation.
Frontiers in Plant Science 2016,
7.
Publisher's VersionAbstractCarrot, a highly profitable crop in Israel, is severely damaged by Phelipanche aegyptiaca parasitism. Herbicides can effectively control the parasite and prevent damage, but for optimal results, knowledge about the soil–subsurface phenological stage of the parasite is essential. Parasitism dynamics models have been successfully developed for the parasites P. aegyptiaca, Orobanche cumana, and Orobanche minor in the summer crops, tomato, sunflower, and red clover, respectively. However, these models, which are based on a linear relationship between thermal time and the parasitism dynamics, may not necessarily be directly applicable to the P. aegyptiaca–carrot system. The objective of the current study was to develop a thermal time model to predict the effect of P. aegyptiaca parasitism dynamics on carrot growth. For development and validation of the models, data was collected from a temperature-controlled growth experiment and from 13 plots naturally infested with P. aegyptiaca in commercial carrot fields. Our results revealed that P. aegyptiaca development is related to soil temperature. Moreover, unlike P. aegyptiaca parasitism in sunflower and tomato, which could be predicted both a linear model, P. aegyptiaca parasitism dynamics on carrot roots required a nonlinear model, due to the wider range of growth temperatures of both the carrot and the parasite. Hence, two different nonlinear models were developed for optimizing the prediction of P. aegyptiaca parasitism dynamics. Both models, a beta function model and combined model composed of a beta function and a sigmoid curve, were able to predict first P. aegyptiaca attachment. However, overall P. aegyptiaca dynamics was described more accurately by the combined model (RMSE = 14.58 and 10.79, respectively). The results of this study will complement previous studies on P. aegyptiaca management by herbicides to facilitate optimal carrot growth and handling in fields infested with P. aegyptiaca. © 2016 Cochavi, Rubin, Achdari and Eizenberg.
Shilo, T. ; Zygier, L. ; Rubin, B. ; Wolf, S. ; Eizenberg, H. .
Mechanism Of Glyphosate Control Of Phelipanche Aegyptiaca.
2016,
244, 1095 - 1107.
Publisher's VersionAbstractDespite its total reliance on its host plant, the holoparasitePhelipanche aegyptiacasuffers from a deficiency of aromatic amino acids upon exposure to glyphosate.