Shilo, T. ; Rubin, B. ; Plakhine, D. ; Gal, S. ; Amir, R. ; Hacham, Y. ; Wolf, S. ; Eizenberg, H. .
Secondary Effects Of Glyphosate Action In Phelipanche Aegyptiaca: Inhibition Of Solute Transport From The Host Plant To The Parasite.
Frontiers in Plant Science 2017,
8, 255.
Publisher's VersionAbstractIt is currently held that glyphosate efficiently controls the obligate holoparasite Phelipanche aegyptiaca (Egyptian broomrape) by inhibiting its endogenous shikimate pathway, thereby causing a deficiency in aromatic amino acids (AAA). While there is no argument regarding the shikimate pathway being the primary site of the herbicide's action, the fact that the parasite receives a constant supply of nutrients, including proteins and amino acids, from the host does not fit with an AAA deficiency. This apparent contradiction implies that glyphosate mechanism of action in P. aegyptiaca is probably more complex and does not end with the inhibition of the AAA biosynthetic pathway alone. A possible explanation would lie in a limitation of the translocation of solutes from the host as a secondary effect. We examined the following hypotheses: (a) glyphosate does not affects P. aegyptiaca during its independent phase and (b) glyphosate has a secondary effect on the ability of P. aegyptiaca to attract nutrients, limiting the translocation to the parasite. By using a glyphosate-resistant host plant expressing the “phloem-mobile” green fluorescent protein (GFP), it was shown that glyphosate interacts specifically with P. aegyptiaca, initiating a deceleration of GFP translocation to the parasite within 24 h of treatment. Additionally, changes in the entire sugars profile (together with that of other metabolites) of P. aegyptiaca were induced by glyphosate. In addition, glyphosate did not impair germination or seedling development of P. aegyptiaca but begun to exert its action only after the parasite has established a connection to the host vascular system and became exposed to the herbicide. Our findings thus indicate that glyphosate does indeed have a secondary effect in P. aegyptiaca, probably as a consequence of its primary target inhibition—via inhibition of the translocation of phloem-mobile solutes to the parasite, as was simulated by the mobile GFP. The observed disruption in the metabolism of major sugars that are abundant in P. aegyptiaca within 48 h after glyphosate treatment provides a possible explanation for this inhibition of translocation and might reflect a critical secondary effect of the herbicide's primary action that results in loss of the parasite's superior sink for solutes.
Spiegelman, Z. ; Shahar, A. ; Wolf, S. .
Down-Regulation Of Slcyp1 In The Phloem Reduces Auxin Response And Photosynthetic Rate In Tomato (Solanum Lycopersicum) Plants. Plant Signal Behav 2017,
12, e1338224.
AbstractThe tomato dgt mutant, containing a single mutation in the Cyclophilin1 (SlCyp1) gene, is auxin insensitive and exhibits a pleotropic phenotype that includes lack of lateral roots, malformed xylem structure and reduced root-to-shoot ratio. Recently, we found that the SlCyp1 protein is phloem-mobile and traffic from shoot to root to induce lateral root formation. These processes are achieved through activation of auxin-mediated developmental programs. Inhibition of the trafficked SlCyp1 activity at the target site resulted in inhibition of the auxin response, supporting the hypothesis that this protein is indeed a mobile signal. Here, we show that partial silencing of SlCyp1 in the phloem only resulted in perturbed auxin response in the roots and reduced photosynthetic and transpiration rates. The presented data suggests that expression of SlCyp1 in the phloem is essential for proper auxin response at the whole plant level. We, therefore, propose that this protein acts as a long-distance signaling molecule acting as coordinator between roots and shoot activities.
Spiegelman, Z. ; Omer, S. ; Mansfeld, B. N. ; Wolf, S. .
Function Of Cyclophilin1 As A Long-Distance Signal Molecule In The Phloem Of Tomato Plants. J Exp Bot 2017,
68, 953-964.
AbstractTomato (Solanum lycopersicum) diageotropica (dgt) mutants, containing a single mutation in the Cyclophilin1 (SlCyp1) gene, are auxin-insensitive, exhibiting a pleiotropic phenotype including lack of geotropism, abnormal xylem structure, lack of lateral roots (LRs), and elevated shoot-to-root ratio. SlCyp1 is a putative peptidyl-prolyl isomerase that can traffic from shoot to root, where it induces changes in auxin response, LR formation, and xylem development, suggesting it has a role as a long-distance signaling molecule. Here, we explored the mechanism underlying SlCyp1 function in the phloem. Expression of SlCyp1 under a phloem-specific (AtSuc2) promoter in dgt plants partially restored the wild-type phenotype, including lateral root development, root branching, and xylem morphology. The observed developmental changes were associated with physiological alternations at the whole-plant level, including a reduction in shoot-to-root ratio, enhanced transpiration, and elevated photosynthetic rates. Conversely, phloem-specific expression of SlCyp1 active-site mutants did not restore the wild-type phenotype. Local inhibition of cyclophilin functioning in the target tissue reduced auxin sensitivity, suggesting that its enzymatic activity in the distant organ is required for its action as a long-distance signalling agent. The data presented suggest that SlCyp1 is a signal molecule trafficking from shoot to root where its activity is required for auxin-mediated lateral root development.