Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Publications

2019
Negin, B. ; Yaaran, A. ; Kelly, G. ; Zait, Y. ; Moshelion, M. . Mesophyll Aba Restrains Early Growth And Flowering But Does Not Directly Suppress Photosynthesis. Plant Physiol 2019.
Abscisic acid (ABA) levels increase significantly in plants under stress conditions and ABA is thought to serve as a key stress-response regulator. However, the direct effect of ABA on photosynthesis and the effect of mesophyll ABA on yield under both well-watered and drought conditions are still the subject of debate. Here, we examined this issue using transgenic Arabidopsis thaliana plants carrying a dominant ABA-signaling inhibitor under the control of a mesophyll-specific promoter (FBPase::abi1-1, abbreviated to fa). Under normal conditions, fa plants displayed slightly higher stomatal conductance and carbon assimilation than wild-type (WT) plants; however, these parameters were comparable following ABA treatment. These observations suggest that ABA does not directly inhibit photosynthesis in the short term. fa plants also exhibited a variety of altered phenotypes under optimal conditions, including more vigorous initial growth, earlier flowering, smaller flowers and delayed chlorophyll degradation. Furthermore, under optimal conditions, fa plant seed production was less than a third of that observed for the WT. However, under drought conditions, WT and fa seed yields were similar due to a significant reduction in WT seed and no reduction in fa seed. These findings suggest that endogenous basal ABA inhibits a stress-escape response under non-stress conditions, allowing plants to accumulate biomass and maximize yield. The lack of a correlation between flowering time and plant biomass combined with delayed chlorophyll degradation suggests that this stress-escape behavior is regulated independently and upstream of other ABA-induced effects such as rapid growth and flowering.
Yaaran, A. ; Negin, B. ; Moshelion, M. . Role Of Guard-Cell Aba In Determining Steady-State Stomatal Aperture And Prompt Vapor-Pressure-Deficit Response. Plant Sci 2019, 281, 31-40.
Abscisic acid (ABA) is known to be involved in stomatal closure. However, its role in stomatal response to rapid increases in the vapor pressure deficit (VPD) is unclear. To study this issue, we generated guard cell-specific ABA-insensitive Arabidopsis plants (guard-cell specific abi1-1; GCabi). Under non-stressed conditions, the stomatal conductance (g) and apertures of GCabi plants were greater than those of control plants. This supports guard-cell ABA role as limiting steady-state stomatal aperture under non-stressful conditions. When there was a rapid increase in VPD (0.15 to 1 kPa), the g and stomatal apertures of GCabi decreased in a manner similar that observed in the WT control, but different from that observed in WT plants treated with fusicoccin. Low VPD increased the size of the stomatal apertures of the WT, but not of GCabi. We conclude that guard-cell ABA does not play a significant role in the initial, rapid stomatal closure that occurs in response to an increase in VPD, but is important for stomatal adaptation to ambient VPD. We propose a biphasic angiosperm VPD-sensing model that includes an initial ABA-independent phase and a subsequent ABA-dependent steady-state phase in which stomatal behavior is optimized for ambient VPD conditions.
2018
Fox, H. ; Doron-Faigenboim, A. ; Kelly, G. ; Bourstein, R. ; Attia, Z. ; Zhou, J. ; Moshe, Y. ; Moshelion, M. ; David-Schwartz, R. . Transcriptome Analysis Of Pinus Halepensis Under Drought Stress And During Recovery. Tree Physiology 2018, 38, 423-441. Publisher's VersionAbstract
Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ∼6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels novel mechanisms. © The Author 2017.
Azoulay-Shemer, T. ; Schwankl, N. ; Rog, I. ; Moshelion, M. ; Schroeder, J. I. . Starch Biosynthesis By Agpase, But Not Starch Degradation By Bam1/3 And Sex1, Is Rate-Limiting For Co -Regulated Stomatal Movements Under Short-Day Conditions. FEBS Lett 2018, 592, 2739-2759.Abstract
Starch in guard cells functions in osmoregulation during stomatal movements. Starch metabolism is controlled by the circadian clock. We investigated the role of starch metabolism in stomatal responses to CO under different photoperiodic conditions. Guard cell starch levels correlate with low/high [CO ] exposure. Starch biosynthesis-deficient AGPase (ADG1) mutants but, unexpectedly, not the starch degradation-deficient BAM1, BAM3, and SEX1 mutants alone, are rate-limiting for stomatal conductance responses to [CO ]-shifts. Interestingly, AGPase is rate-limiting solely under short- but not long-day conditions. These findings suggest a model of enhanced AGPase activity in guard cells under short days such that starch biosynthesis becomes rate-limiting for CO -induced stomatal closing.
Galkin, E. ; Dalal, A. ; Evenko, A. ; Fridman, E. ; Kan, I. ; Wallach, R. ; Moshelion, M. . Risk-Management Strategies And Transpiration Rates Of Wild Barley In Uncertain Environments. Physiol Plant 2018, 164, 412-428.
Regulation of the rate of transpiration is an important part of plants' adaptation to uncertain environments. Stomatal closure is the most common response to severe drought. By closing their stomata, plants reduce transpiration to better their odds of survival under dry conditions. Under mild to moderate drought conditions, there are several possible transpiration patterns that balance the risk of lost productivity with the risk of water loss. Here, we hypothesize that plant ecotypes that have evolved in environments characterized by unstable patterns of precipitation will display a wider range of patterns of transpiration regulation along with other quantitative physiological traits (QPTs), compared to ecotypes from less variable environments. We examined five accessions of wild barley (Hordeum vulgare ssp. spontaneum) from different locations in Israel (the B1K collection) with annual rainfall levels ranging from 100 to 900 mm, along with one domesticated line (cv. Morex). We measured several QPTs and morphological traits of these accessions under well-irrigated conditions, under drought stress and during recovery from drought. Our results revealed a correlation between precipitation-certainty conditions and QPT plasticity. Specifically, accessions from stable environments (very wet or very dry locations) were found to take greater risks in their water-balance regulation than accessions from areas in which rainfall is less predictable. Notably, less risk-taking genotypes recovered more quickly than more risk-taking ones once irrigation was resumed. We discuss the relationships between environment, polymorphism, physiological plasticity and fitness, and suggest a general risk-taking model in which transpiration-rate plasticity is negatively correlated with population polymorphism.
2017
Negin, B. ; Moshelion, M. . The Advantages Of Functional Phenotyping In Pre-Field Screening For Drought-Tolerant Crops. Functional Plant Biology 2017, 44, 107 - 118. Publisher's VersionAbstract
Increasing worldwide demand for food, feed and fuel presents a challenge in light of limited resources and climatic challenges. Breeding for stress tolerance and drought tolerance, in particular, is one the most challenging tasks facing breeders. The comparative screening of immense numbers of plant and gene candidates and their interactions with the environment represents a major bottleneck in this process. We suggest four key components to be considered in pre-field screens (phenotyping) for complex traits under drought conditions: (i) where, when and under which conditions to phenotype; (ii) which traits to phenotype; (iii) how to phenotype (which method); and (iv) how to translate collected data into knowledge that can be used to make practical decisions. We describe some common pitfalls, including inadequate phenotyping methods, incorrect terminology and the inappropriate use of non-relevant traits as markers for drought tolerance. We also suggest the use of more non-imaging, physiology-based, high-throughput phenotyping systems, which, used in combination with soil–plant–atmosphere continuum (SPAC) measurements and fitting models of plant responses to continuous and fluctuating environmental conditions, should be further investigated in order to serve as a phenotyping tool to better understand and characterise plant stress response. In the future, we assume that many of today’s phenotyping challenges will be solved by technology and automation, leaving us with the main challenge of translating large amounts of accumulated data into meaningful knowledge and decision making tools.
Aidoo, M. K. ; Quansah, L. ; Galkin, E. ; Batushansky, A. ; Wallach, R. ; Moshelion, M. ; Bonfil, D. J. ; Fait, A. . A Combination Of Stomata Deregulation And A Distinctive Modulation Of Amino Acid Metabolism Are Associated With Enhanced Tolerance Of Wheat Varieties To Transient Drought. Metabolomics 2017, 13, 138. Publisher's VersionAbstract
Mediterranean winter crops are commonly and increasingly exposed to irregular rainfall and high temperatures, which lead to transient drought events of different degrees, adversely affecting growth and yield. Hence, exploring the diverse degrees of tolerance to drought existing in the crop and the molecular strategies behind it is pivotal for the development of ad hoc breeding programs.
Fox, H. ; Doron-Faigenboim, A. ; Kelly, G. ; Bourstein, R. ; Attia, Z. ; Zhou, J. ; Moshe, Y. ; Moshelion, M. ; David-Schwartz, R. . Transcriptome Analysis Of Pinus Halepensis Under Drought Stress And During Recovery. Tree Physiology 2017, 38, 423-441. Publisher's VersionAbstract
Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total,  6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species’ dynamic response to drought and recovery and unravels novel mechanisms.
Kelly, G. ; Sade, N. ; Doron-Faigenboim, A. ; Lerner, S. ; Shatil-Cohen, A. ; Yeselson, Y. ; Egbaria, A. ; Kottapalli, J. ; Schaffer, A. A. ; Moshelion, M. ; et al. Sugar And Hexokinase Suppress Expression Of Pip Aquaporins And Reduce Leaf Hydraulics That Preserves Leaf Water Potential. Plant J 2017, 91, 325-339.Abstract
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.
Halperin, O. ; Gebremedhin, A. ; Wallach, R. ; Moshelion, M. . High-Throughput Physiological Phenotyping And Screening System For The Characterization Of Plant-Environment Interactions. Plant J 2017, 89, 839-850.Abstract
We present a simple and effective high-throughput experimental platform for simultaneous and continuous monitoring of water relations in the soil-plant-atmosphere continuum of numerous plants under dynamic environmental conditions. This system provides a simultaneously measured, detailed physiological response profile for each plant in the array, over time periods ranging from a few minutes to the entire growing season, under normal, stress and recovery conditions and at any phenological stage. Three probes for each pot in the array and a specially designed algorithm enable detailed water-relations characterization of whole-plant transpiration, biomass gain, stomatal conductance and root flux. They also enable quantitative calculation of the whole plant water-use efficiency and relative water content at high resolution under dynamic soil and atmospheric conditions. The system has no moving parts and can fit into many growing environments. A screening of 65 introgression lines of a wild tomato species (Solanum pennellii) crossed with cultivated tomato (S. lycopersicum), using our system and conventional gas-exchange tools, confirmed the accuracy of the system as well as its diagnostic capabilities. The use of this high-throughput diagnostic screening method is discussed in light of the gaps in our understanding of the genetic regulation of whole-plant performance, particularly under abiotic stress.
Wigoda, N. ; Pasmanik-Chor, M. ; Yang, T. ; Yu, L. ; Moshelion, M. ; Moran, N. . Differential Gene Expression And Transport Functionality In The Bundle Sheath Versus Mesophyll - A Potential Role In Leaf Mineral Homeostasis. J Exp Bot 2017, 68, 3179-3190.Abstract
Under fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions.
Dalal, A. ; Attia, Z. ; Moshelion, M. . To Produce Or To Survive: How Plastic Is Your Crop Stress Physiology?. Front Plant Sci 2017, 8, 2067.Abstract
Abiotic stress causes major crop losses and is considered a greater challenge than biotic stress. Comparisons of the number of published articles and patents regarding these different types of stresses, and the number of commercially released crops designed to tolerate different types of stresses, revealed a huge gap in the bench-to-field transfer rate of abiotic stress-tolerant crops, as compared to crops designed to tolerate biotic stress. These differences underscore the complexity of abiotic stress-response mechanisms. Here, we suggest that breeding programs favoring yield-related quantitative physiological traits (QPTs; e.g., photosynthesis rate or stomatal conductance) have canalized those QPTs at their highest levels. This has affected the sensitivity of those QPTs to changing environmental conditions and those traits have become less plastic. We also suggest that breeding pressure has had an asymmetric impact on different QPTs, depending on their sensitivity to environmental conditions and their interactions with other QPTs. We demonstrate this asymmetric impact on the regulation of whole-plant water balance, showing how plastic membrane water content, stomatal conductance and leaf hydraulic conductance interact to canalize whole-organ water content. We suggest that a QPT's plasticity is itself an important trait and that understanding this plasticity may help us to develop yield-optimized crops.
2016
Turgeman, T. ; Shatil-Cohen, A. ; Moshelion, M. ; Teper-Bamnolker, P. ; Skory, C. D. ; Lichter, A. ; Eshel, D. . The Role Of Aquaporins In Ph-Dependent Germination Of Rhizopus Delemar Spores. PLoS ONE 2016, 11. Publisher's Version
Yaaran, A. ; Moshelion, M. . Role Of Aquaporins In A Composite Model Of Water Transport In The Leaf. International Journal of Molecular Sciences 2016, 17. Publisher's Version
Negin, B. ; Moshelion, M. . The Evolution Of The Role Of Aba In The Regulation Of Water-Use Efficiency: From Biochemical Mechanisms To Stomatal Conductance. Plant Science 2016, 251, 82 - 89. Publisher's Version
2015
Sade, N. ; Shatil-Cohen, A. ; Moshelion, M. . Bundle-Sheath Aquaporins Play A Role In Controlling Arabidopsis Leaf Hydraulic Conductivity. Plant Signal Behav 2015, 10, e1017177.Abstract
The role of molecular mechanisms in the regulation of leaf hydraulics (K(leaf)) is still not well understood. We hypothesized that aquaporins (AQPs) in the bundle sheath may regulate K(leaf). To examine this hypothesis, AQP genes were constitutively silenced using artificial microRNAs and recovery was achieved by targeting the expression of the tobacco AQP (NtAQP1) to bundle-sheath cells in the silenced plants. Constitutively silenced PIP1 plants exhibited decreased PIP1 transcript levels and decreased K(leaf). However, once the plants were recovered with NtAQP1, their K(leaf) values were almost the same as those of WT plants. We also demonstrate the important role of ABA, acting via AQP, in that recovery and K(leaf) regulation. These results support our previously raised hypothesis concerning the role of bundle-sheath AQPs in the regulation of leaf hydraulics.
Attia, Z. ; Domec, J. - C. ; Oren, R. ; Way, D. A. ; Moshelion, M. . Growth And Physiological Responses Of Isohydric And Anisohydric Poplars To Drought. J Exp Bot 2015, 66, 4373-81.Abstract
Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed.
Moshelion, M. ; Altman, A. . Current Challenges And Future Perspectives Of Plant And Agricultural Biotechnology. Trends Biotechnol 2015, 33, 337-42.Abstract
Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.
2014
Ma, X. ; Shatil-Cohen, A. ; Ben-Dor, S. ; Wigoda, N. ; Perera, I. Y. ; Im, Y. J. ; Diminshtein, S. ; Yu, L. ; Boss, W. F. ; Moshelion, M. ; et al. Do Phosphoinositides Regulate Membrane Water Permeability Of Tobacco Protoplasts By Enhancing The Aquaporin Pathway?. Planta 2014, 241, 741-755. Publisher's VersionAbstract
Main conclusion: Enhancing the membrane content of PtdInsP2, the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (Pf) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase (‘Ptase cells’) or human phosphatidylinositol (4) phosphate 5-kinase (‘PIPK cells’). The mean Pf of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive Pf: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased Pf by 12–30 μm s−1, while in the controls only by 3–4 μm s−1. (2) Cytosol acidification—known to inhibit aquaporins—lowered the Pf in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects. © 2014, Springer-Verlag Berlin Heidelberg.
Wigoda, N. ; Moshelion, M. ; Moran, N. . Is The Leaf Bundle Sheath A "Smart Flux Valve" For K+ Nutrition?. Journal of Plant Physiology 2014, 171, 715-722. Publisher's VersionAbstract
Evidence has started to accumulate that the bundle sheath regulates the passage of water, minerals and metabolites between the mesophyll and the conducting vessels of xylem and phloem within the leaf veins which it envelops. Although potassium (K+) nutrition has been studied for several decades, and much is known about the uptake and recirculation of K+ within the plant, the potential regulatory role of bundle sheath with regard to K+ fluxes has just begun to be addressed. Here we have collected some facts and ideas about these processes. © 2014 Elsevier GmbH.