Publications By Year

Publications by Authors

Recent Publications

Contact Us

 

Mailing Address:
The Robert H. Smith Institute of
Plant Sciences and Genetics
in Agriculture
Herzl 229, Rehovot 7610001, Israel

Administrator: 
Neomi Maimon 
Tel: 972-8-948-9251,
Fax: 972-8-948-9899,
E-mail: neomim@savion.huji.ac.il

Secretary of teaching program:
Ms. Iris Izenshtadt
Tel: 972-8-9489333
E-mail: Iris.Izenshtadt@mail.huji.ac.il

Director: 
Prof. Naomi Ori
Tel: 972-8-948-9605
E-mail: naomi.ori@mail.huji.ac.il

 

Target Site Resistance to Acetolactate Synthase Inhibitors in Diplotaxis erucoides and Erucaria hispanica-Mechanism of Resistance and Response to Alternative Herbicides

Date Published:

APR

Abstract:

Diplotaxis erucoides and Erucaria hispanica are common weeds of the Mediterranean region; they infest various habitats including cultivated fields and roadsides. In several fields across Israel, farmers have reported on poor control of D. erucoides and E. hispanica plants using acetolactate synthase (ALS) inhibitors. Greenhouse experiments were conducted to determine the effect of various ALS inhibitors on plants from two potentially resistant D. erucoides and E. hispanica populations. Additionally, alternative management strategies using auxinic herbicides were studied. Plants from both populations exhibited resistance to all tested ALS inhibitors, up to 20-fold the label field rate, as compared with ALS sensitive populations of D. erucoides and E. hispanica. Sequencing of the ALS gene revealed Trp574 to Leu substitution in ALS-resistant D. erucoides plants, whereas a Pro197 to Ser substitution was detected in ALS-resistant E. hispanica plants. Although high levels of resistance were observed in individuals from both putative resistant populations, sensitive individuals were also detected, suggesting the evolution of resistance in these two populations is still in progress. Auxinic herbicides, 2,4-D, and mecoprop-P, provided excellent control of plants from both ALS-resistant populations. This study documents and confirms the first case of evolution of resistance to ALS inhibitors in D. erucoides and E. hispanica populations.