Prof. Nava Moran


Plant signal transduction, circadian rhythms, regulation of plant membrane transport, Phototransduction, regulation by llipids, regulation & structure-function relationship of ion channels, heavy-metal transport.

Current Research Projects:

Plant ion channels and their regulation by membrane lipids.

Structure-function relationship of plant channels.

List of Publications

  1. Moran N, Palti Y, Levitan E, Staempfli R (1980) Potassium ion accumulation at the external surface of the nodal membrane in frog myelinated fibers. Biophys. J. 32: 939-954 abstract
  2. Huang LYM, Moran N, Ehrenstein G (1984) Gating kinetics of BTX-modified sodium channels in neuroblastoma cells determined from single-channel measurements. Biophys. J. 45: 515-322 article
  3. Moran, N., Ehrenstein, G., Iwasa, K., Bare, C. and Mischke, C., 1984, Ion channels in plasmalemma of wheat protoplasts, Science, 226:835-838. abstract
  4. Moran, N., Ehrenstein, G., Iwasa, K., Mischke, C., Bare, C. and Satter, R.L., 1988, Potassium channels in motor cells of Samanea saman: A patch-clamp study, Plant Physiol., 88:643-648 abstract
  5. Satter, R.L. and Moran, N., 1988, Ionic channels in plant cell membranes, Physiol. Plant. 72:816-820 article
  6. Satter, R.L., Morse, M.J., Lee, Y., Crain, R.C., Cote, G. and Moran, N., 1988, Light and clock-controlled leaflet movements in Samanea saman: A physiological, biophysical and biochemical analysis, Bot. Acta, 101:205-213 article
  7. Ilan, N., Schwartz, A. and Moran, N., 1994, External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba. J. Gen. Physiol., 103:807-831 abstract
  8. Manor, D., Moran, N., Segal, M. 1994. Interactions among calcium compartments in C6 glial cells: involvement of potassium channels. J. Physiol., 478:251-263 article
  9. Manor D, Moran N. 1994. Modulation of small-conductance calcium-activated potassium channels in c6 glioma cells. J.Membr.Biol. 140: 69-79 article
  10. Moran, N., Yueh,Y.G. and Crain, R.C., 1996, Signal transduction and cell volume regulation in plant leaflet movements. News Physiol. Sci., 11:108-114 article
  11. Moran, N., 1996, Membrane-delimited phosphorylation enables the activation of the outward-rectifying K channels in a plant cell. Plant Physiol., 111:1281-1292 abstract
  12. Suh, S., Moran, N. and Lee, Y., 2000. Blue light activates depolarization-dependent K channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol., 123: 833-843 abstract
  13. Homburg, S., Visochek, L., Moran, N., Dantzer, F., Priel, E., Asculai, E., Schwartz, D., Rotter, V., Dekel, N. and Cohen-Armon, M., 2000. A fast signal-induced activation of poly(ADP-ribose) polymerase: A novel downstream target of Phospholipase C. J Cell Biol. 150:293-307 article
  14. Moshelion, M. and Moran, N., 2000. Potassium-efflux channels in extensor and flexor cells of Samanea saman are not identical. Effects of cytosolic calcium. Plant Physiol. 124:911-919. (Corrected version reprinted in Feb. 2001) article
  15. Yu, L., Moshelion M., Moran N., 2001. Extracellular protons inhibit the activity of inward-rectifying K channels in the motor cells of Samanea saman pulvini. Plant Physiol. 127:1310-1322 article
  16. Jacoby B, Moran N (2001) Mineral nutrients transport in plants. In: Handbook of Plant and Crop Physiology, M Pessarakli, ed, 2nd Ed. Marcel Dekker Inc., New York article
  17. Moshelion, M., Becker, D., Czempinski, K., Mueller-Roeber, B., Hedrich, R., Attali, B. and Moran, N., 2002. Diurnal and circadian regulation of putative potassium channels in a leaf-moving organ. Plant Physiol. 128:634-642 article
  18. Moshelion, M., Becker, D., Hedrich, R., Biela, A., Otto, B., Levi, H., Moran, N. and Kaldenhoff, R., 2002. PIP aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. The Plant Cell. 14:727-739 article
  19. Ben-Yair, L., Slaaby, R., Herman, A., Cohen, Y., Biener, E., Moran, N., Yoshimura, A., Whittaker, J., de Meyts, P., Herman, B., Gertler, A., 2002. Preparation and expression of biologically active prolactin and growth hormone receptors and suppressor of cytokine signaling proteins 1, 2, 3, and 6 tagged with cyan and yellow fluorescent proteins. Protein Expres. Purif., 25: 456-464 article
  20. Jeong, J., Suh, S., Guan, C., Tsay, Y-F., Moran, N., Oh, C.J., An, C.S., Pawlowski, K., and Lee, Y., 2004. A nodule-specific dicarboxylate transporter from Alnus glutinosa is a member of the PTR family. Plant Physiol. 134:969-978 article
  21. Moshelion, M., Moran, N., and Chaumont, F., 2004. Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol. 135: 2301-2317 article modeling software
  22. Yu, L., Becker, D., Levi, H., Moshelion, M., Hedrich, R., Lotan, I., Moran, A., Pick, U., Naveh, L., Libal, Y. and Moran N., 2006. Phosphorylation of SPICK2, an AKT2 channel homologue from Samanea motor cells. J. Exp. Bot. 57: 3583-3594 article
  23. Moran N (2007) Rhythmic leaf movements: physiological and molecular aspects. In Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance, S Mancuso, S Shabala, eds. Springer-Verlag GmbH, Berlin Heidelberg, pp 3-38 article
  24. Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett 581: 2337-2347 article
  25. Kim Y-Y, Kim D-Y, Shim D, Song W-Y, Lee J, Schroeder JI, Kim S, Moran N, Lee Y (2008) Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast. J Biol Chem 283: 15893-15902 article
  26. Ma X, Shor O, Diminshtein S, Yu L, Im YJ, Perera I, Lomax A, Boss WF, Moran N (2009) Phosphatidylinositol (4,5)-bisphosphate Inhibits K+-efflux channel activity in NT1 tobacco cultured cells. Plant Physiol. 149: 1127-1140 reprint
  27. Wigoda N, Ma X, Moran N (2010) Phosphatidylinositol (4,5)bisphosphate regulates plant K+ channels. Biochem Soc Trans 38(2): 705-709 article
  28. Boss, W. F., Winter-Sederoff, H., Im, Y.Ju., Moran, N., Grunden, A.M., Perera, I.Y. 2010. Basal signaling regulates plant growth and development (Future Perspectives in Plant Biology). Plant Physiol 154(2): 439-443. article
  29. Lamdan NL, Attia Z, Moran N & Moshelion M. (2012). The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites? Plant, Cell and Environment 35, 735-746 article
  30. Ma X, Shatil-Cohen A, Ben-Dor S, Wigoda N, Perera I, Im Y, Diminshtein S, Yu L, Boss W, Moshelion M, Moran N (2014) Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway? Planta: 1-15
  31. Shatil-Cohen A, Sibony H, Draye X, Chaumont F, Moran N, Moshelion M (2014) Measuring the osmotic water permeability coefficient (Pf) of spherical cells: isolated plant protoplasts as an example. J Vis Exp 92: e51652 coefficient-pf-spherical-cells
  32. Wigoda N, Moshelion M, Moran N (2014) Is the leaf bundle sheath a “smart flux valve” for K+ nutrition? J Plant Physio 171: 715-722
  33. Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels Plant Physio l 166: 945-959




PfFit (ver2.01) is a three-part program for the calculation of osmotic water permeability of cell membrane (Pf) from volume changes of a spherical, wall-less cell, evoked by a non-instantaneous change of osmolarity in the external medium. The Pf calculation takes into account the rate of the osmolarity change.

It is a stand-alone MATLAB program written by Nava Moran and Menachem Moshelion, with GUI written by Roy Novik, compiled with the help of Deborah Weisman.

The basic assumptions and definitions underlying the algorithm of volume fitting are explained by Moshelion et al., 2004, including the Supplemental Material on the web (Dynamic Changes in the Osmotic water Permeability of Protoplast Plasma Membrane, by Menachem Moshelion, Nava Moran and Francois Chaumont, Plant Physiol., 135:2301-2317, doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​104.​043000).

How to use PfFit in the context of an experiment is explained by Shatil-Cohen et al. , 2014 (Measuring the Osmotic Water Permeability Coefficient (Pf) of Spherical Cells: Isolated Plant Protoplasts as an Example, by by Arava Shatil-Cohen, Hadas Sibony, Xavier Draye, François Chaumont, Nava Moran and Menachem Moshelion, JoVE, the Journal of Visualized Experiments, and further, in The PfFit User Guide (ibid.).


The PfFit program involves curve fitting. The ease of obtaining results may be deceptive!

Check the reported error values, strive for making it as small as possible, re-try the fit with many various sets of initial guesses!!! Create simulated data, add "noise", then try to fit - to get the feeling. Even a small improvement in error may be important!

Be cautious and skeptical!!


PfFit has three parts:

A: IndicatorFit, for determining the parameters of the time course of concentration changes of the bath osmoticum;

B: ModelMake, for generating simulations of bath osmoticum changes, changes of the osmotic water permeability (Pf) and of the cell volume changes;

C: VolumeFit, for extracting the osmotic water permeability (Pf) from the time course of changes in cell volume and the changes of bath osmoticum.


Contact Prof Moran for PfFit installer

Example movie: protoplast swelling

Example movie: Indicator flush-out