List of Publications

  • Bratt, A. *, Rosenwasser, S.* , Meyer, A., and Fluhr, R. (2016). Organelle redox autonomy during environmental stress. Plant Cell Environ.‏ 39(9):1909-19
  • Rosenwasser, S. , Ziv, C., van Creveld, S. G., and Vardi, A. (2016). Virocell Metabolism: Metabolic innovations during host–virus interactions in the Ocean. Trends Microbiol. 24(10), 821-832.‏
  • van Creveld, S. G. *, Rosenwasser, S. * , Levin, Y., and Vardi, A. (2016). Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol. 172(2), 968-979.‏
  • Malitsky, S. *, Ziv, C. *, Rosenwasser, S. * , Zheng, S., Schatz, D., Porat, Z., Ben-Dor, S., Aharoni, A., and Vardi, A. (2016). Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210(1), 88-96
  • Sheyn, U., Rosenwasser, S. , Ben-Dor, S., Porat, Z., and Vardi, A. (2016). Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. doi: 10.1038/ismej.2015.228.
  • Schatz, D., Shemi, A., Rosenwasser, S. , Sabanay, H., Wolf, S., Ben-Dor, S., and Vardi, A. (2014). Hijacking of an autophagy-like process is essential for the life cycle of a DNA virus infecting oceanic algal blooms. New Phytol. 204(4), 854-863.
  • Graff van Creveld, S. *, Rosenwasser, S. , Schatz, D., Koren, I., and Vardi, A. (2014). Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J. 9(2), 385-395.
  • Rosenwasser,  S . , Mausz, M.A. *, Schatz, D., Sheyn, U., Malitsky, S., Aharoni, A., Weinstock, E., Tzfadia, O., Ben-Dor, S., Feldmesser, E., Pohnert, G., and Vardi, A. (2014). Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell. 26 (6): 2689-2707. 
    Highlight : A virus that enslaves ocean algae by Pamela J. Hines  in Science (2014).doi: 10.1126/science.345.6193.176-a
  • Rosenwasser, S. , Graff van Creveld, S., Schatz, D., Malitsky, S., Tzfadia, O., Aharoni, A., Levin, Y., Gabashvili, A., Feldmesser, E.,  and Vardi, A . (2014). Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc. Natl. Acad. Sci. U. S. A. 111(7):2740-5.
  • Feldmesser, E., Rosenwasser, S. , Vardi, A., and Ben-Dor, S. (2014). Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi . BMC Genomics. 15:148.
  • Mor, A., Koh, E., Weiner, L., Rosenwasser, S. Sibony-Benyamini, H. and Fluhr, R. (2014). Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol. 165(1), 249-261.
  • Rosenwasser, S. Fluhr, R., Joshi J.R., Leviatan, N., Sela, N. , Hetzroni, A., and Friedman, H. (2013). ROSMETER: a bioinformatic tool for the identification of transcriptomic imprints related to reactive oxygen species type and origin provides new insights into stress responses. Plant Physiol. 163(2):1071-83.
  • Rosenwasser, S. , Rot, I., Sollner, E., Meyer, A.J., Smith, Y., Leviatan, N. Fluhr, R., and Friedman, H. (2011). Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol. 156(1):185-201.
  • Rosenwasser, S. , Rot, I., Meyer, A.J., Feldman L., Jiang, K., and Friedman, H. (2010). A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol Plant. 138(4):493-502.
  • Rosenwasser, S. , Belausov, E. , Riov, J, Holdengreber, V., and Friedman, H. (2010).Gibberellic Acid (GA3) inhibits ROS increase in chloroplasts during dark-Induced senescence of   Pelargonium cuttings. J. Plant Growth Regul. 29: 375-384.
  • Rosenwasser, S. , Mayak, S., and Friedman, H. (2006). Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of Pelargonium cuttings and the effect of gibberellic acid. Plant Sci. 170: 873-879.